
Oxide: The Essence of Rust
POPL 2019 Student Research Competition Extended Abstract

Aaron Weiss
Northeastern University

weiss@ccs.neu.edu

1 INTRODUCTION
The Rust programming language exists at the intersection

of low-level “systems” programming and high-level “appli-

cations” programming, aiming to empower the program-

mer with both fine-grained control over memory and per-

formance and high-level abstractions that make software

safer and quicker to produce. To accomplish this, Rust in-

tegrates decades of programming languages research into

a production system, in particular, linear and ownership

types [2, 4, 7, 9] and region-basedmemorymanagement [3, 5].

Yet, Rust goes beyond much of this prior art in developing

a particular discipline that aims to balance both expressiv-
ity and usability. Thus, we hold that Rust has something

interesting to teach us about making ownership practical
for programming. To that end, we are designing a formal

semantics called Oxide to capture the essence of Rust.
While there are some existing formalizations [6, 8, 10],

none capture a high-level understanding of Rust’s essence

(namely ownership and borrowing). Patina [8], the first major

effort, formalized an early version of Rust which predates

much of the work to simplify and streamline the language.

RustBelt [6], the most complete effort to date, formalized

a low-level, intermediate language in continuation-passing

style, which makes it difficult to reason about ownership as

a source-level concept. Finally, an early version of Oxide [10]

oversimplified some parts of the language and overcompli-

cated others. We describe the changes from this early version

in more detail later.

In this work, we present key pieces of the latest version

of Oxide, and in particular, our core language Oxide0 which

omits unsafe-implemented abstractions from the standard

library. In future work, we will describe further extensions

Oxide1, Oxide2, and so forth that add essential abstractions

from the standard library as described in our prior work [10].

2 OWNERSHIP AND BORROWING
The essence of Rust lies in its novel approach to ownership
and borrowing, which we explain intuitively before diving

into their formal presentation. To start, we consider Fig. 1.

First, on line 1, we declare a type Point that consists of

a pair of unsigned 32-bit integers (u32). Then, on line 3, we

create a new Point bound to p. In Rust, each value is owned
by the identifier to which it’s bound. So, we can then say that

1 struct Point(u32, u32);
2

3 let p: Point = Point(3, 2);
4 let pt: Point = p;
5 // At this point, we can no longer refer to p.
6 let x: &'x u32 = &'a imm pt.0;
7 // At this point, we can no longer mutate pt.
8 let y: &'y u32 = &'b imm pt.1;

Figure 1: A little example program in Oxide0.

p owns the value Point(3, 2). Then, on line 4, wemove the
value from p to the new identifer pt. This is the first operation
that affects ownership. After moving the value out of p, we
invalidate the old name and thus further attempts to use it

will result in an error. Then, on line 6, we create a reference

borrowing from the place pt.0 — the first projection of pt.
This borrowing operation also affects ownership, but in a

more subtle way as we explain below.

There are two distinct kinds of borrows — immutable and

mutable — though it might be more apt to refer to them as

shared and unique respectively. During an immutable bor-

row (like the one on line 6), the value can actually be shared
between other references, but only as long as they are all im-

mutable. During a mutable borrow, the new reference must

be unique which means that the old identifer is temporarily

invalidated while this reference is alive. This mutual exclu-

sivity between mutation and sharing is how Rust can rule

out the possibility of data races in concurrent programs, and

is the site of the aforementioned subtlety.

Formally, we model ownership and borrowing with lin-

ear capabilities [3] and fractional permissions [1]. We’ve

developed a novel type-and-effect system that automati-

cally tracks fractional capabilities representing ownership by

recording and applying effects that modify these capabilities.

This system takes the form of the judgment:

Σ;∆; Γ;L ⊢ e : τ ⇒ ε

In this judgment, we have four environments. Our first

environment Σ (called the global environment) records top-

level definitions of functions and types like the one we saw

on line 1 of our example (struct Point(u32, u32)). Our
second environment ∆ (called the type variable environment)

records in-scope type variables and their respective kinds κ

Aaron Weiss

Places π F x | ∗ π
| π .x | π .n
| π [n]
| π [n1..n2]

Figure 2: The grammar for places in Oxide.

— since we have both type variables α and region variables ρ.
Our third environment Γ (called the variable environment)

tracks in-scope places π (described below) and their types τ
with the fractional capability f guarding their use. Entries

in Γ are written π :f τ . Our final environment L (called

the loan environment) tracks valid loans ℓ with a fractional

capability f and the place π of their provenance. These loans

ℓ (like 'a and 'b in Fig 1) give names to specific borrow

sites in the program that are used in our types to track the

possible provenance of references.

Places. Places are expressions that represent a location in

memory. In Oxide, we use these expressions themselves to

capture the shape of memory in order to keep our memory

model abstract and easier to reason about. In Fig 2, we have

the grammar of places including identifiers, dereferencing,

projection, indexing, and slicing. Places appear in the syntax

of expressions that affect ownership like moves and borrows.

Transferring Ownership. In T-Move (Fig. 3), we give a static

semantics to places π as expressions which dynamically

move values out of the places in memory which own them.

As the earlier example (Fig. 1) captured, this is only safe if π
has a whole capability (written 1) associated with it — since

otherwise, moving the value would invalidate some existing

references. Further, T-Movemust have the effect of dropping
π from the environments to prevent further use.

Borrowing Ownership. In T-BorrowImm (Fig. 3), we give a

static semantics to immutable borrows which require that

the place π being borrowed from has a non-zero capability

associated with it and yields a borrow effect that, when ap-

plied, creates a new entry in the loan environment L with

the given data. Additionally, the type we produce records a

singleton loan set { ℓ } specifying that the reference came

from that particular borrow site. T-BorrowMut (Fig. 3) is anal-

ogous, but requires a whole capability, rather than simply a

non-zero one.

Ownership and Branching. Branching in programs plays a

central role in tracking ownership since it introduces a point

where precise aliasing information is lost. T-Branch (Fig. 3)

captures how we handle this loss of precision. In particular,

we typecheck each side of the branch in environments Γ
and L after applying the effect ε1, and then unify their

types to get a combined type τ (denoted τ1 ∼ τ2 ⇒ τ3).

T-Move

Γ ⊢ π :1 τ

Σ;∆; Γ;L ⊢ π : τ ⇒ drop π

T-BorrowImm

ℓ < L Γ ⊢ π :f τ f , 0

Σ;∆; Γ;L ⊢ &ℓ imm π : &{ ℓ } imm τ ⇒ borrow imm π as ℓ

T-BorrowMut

ℓ < L Γ ⊢ π :1 τ

Σ;∆; Γ;L ⊢ &ℓ mut π : &{ ℓ } mut τ ⇒ borrow mut π as ℓ

T-Branch

Σ;∆; Γ;L ⊢ e1 : bool ⇒ ε1
Σ;∆; ε1(Γ;L) ⊢ e2 : τ2 ⇒ ε2
Σ;∆; ε1(Γ;L) ⊢ e3 : τ3 ⇒ ε3

τ2 ∼ τ3 ⇒ τ

Σ;∆; Γ;L ⊢ if e1 { e2 } else { e3 } : τ ⇒ ε1, merge(ε2, ε3)

Figure 3: A selection of important typing rules in Oxide.

In this unification, we union the sets of loans that appear

in the reference types (introduced by T-BorrowImm and T-

BorrowMut) which tell us that values at that type could

come from any of the loans in the set.

3 COMPARISON TO EARLIER OXIDE
Compared to our earlier version [10], the primary difference

is that we now modelmoves andmutable borrows as separate
operations, rather than modelling the former as the latter. In

doing so, we recognize that the distinction between a move
and a mutable borrow is essential to Rust’s semantics. We

then simplified Oxide by removing the existence of alloc
as a syntactic form (which was never present in Rust). The

result is a semantics more faithful to Rust.

4 METATHEORY
We prove type safety for Oxide0 using progress and preser-

vation [11]. The proofs of both lemmas are standard, but rely

on an instrumented dynamic semantics where we maintain

the loan environment L at runtime. It is straightforward

to define a subsequent erasure translation that removes this

instrumentation.

Lemma (Progress). If Σ;∆; Γ;L ⊢ e : τ ⇒ ε and Γ ⊢ L
and Σ; Γ;L ⊢ σ , then either e is a value or ∃ σ ′,L ′, e ′.
(σ ; L ; e) → (σ ′

; L ′
; e ′) .

Lemma (Preservation). If Σ;∆; Γ;L ⊢ e : τ ⇒ ε and
Γ ⊢ L and Σ; Γ;L ⊢ σ and (σ ; L ; e) → (σ ′

; L1; e
′)

then ∃ ε1, ε2. ε1, ε2 ≤ ε ∧ ∃ Γ′, L ′. ε1(Γ
′
;L ′) = Γ1;L1 ∧

Σ;∆; Γ1;L1 ⊢ e
′
: τ ⇒ ε2 ∧ Γ1 ⊢ L1 ∧ Σ; Γ1;L1 ⊢ σ

′.

Oxide: The Essence of Rust

ACKNOWLEDGMENTS
This work has been done in collaboration with Amal Ahmed,

Niko Matsakis, and Daniel Patterson. However, the mate-

rial and presentation here is the work of Aaron Weiss. This

material is based upon work supported in part by the Na-

tional Science Foundation under grants CCF-1453796 and

CCF-1618732, and an NSF Graduate Research Fellowship

(GRFP). It was also supported in part by the European Re-

search Council under ERC Starting Grant SECOMP (715753).

REFERENCES
[1] John Boyland. 2003. Checking Interference with Fractional Permis-

sions. International Static Analysis Symposium (2003).

[2] David G. Clarke, John M. Potter, and James Noble. 1998. Ownership

Types for Flexible Alias Protection. In ACM Symposium on Object Ori-
ented Programming: Systems, Languages, and Applications (OOPSLA),
Vancouver, British Columbia.

[3] Matthew Fluet, GregMorrisett, and Amal Ahmed. 2006. Linear Regions

Are All You Need. In European Symposium on Programming (ESOP).
[4] Jean-Yves Girard. 1987. Linear Logic. Theoretical Computer Science

(1987).

[5] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling

Wang, and James Cheney. 2002. Region-Based Memory Management

in Cyclone. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Berlin, Germany.

[6] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

2018. RustBelt: Securing the Foundations of the Rust Programming

Language. In ACM Symposium on Principles of Programming Languages
(POPL), Los Angeles, California.

[7] James Noble, Jan Vitek, and John Potter. 1998. Flexible Alias Protection.

In European Conference on Object-Oriented Programming (ECOOP).
[8] Eric Reed. 2015. Patina: A formalization of the Rust programming

language. Master’s thesis. University of Washington.

[9] Philip Wadler. 1990. Linear types can change the world! Programming
Concepts and Methods (1990).

[10] Aaron Weiss, Daniel Patterson, and Amal Ahmed. 2018. Rust Distilled:

An Expressive Tower of Languages. ML Family Workshop (2018).

[11] Andrew K. Wright and Matthias Felleisen. 1992. A Syntactic Approach

to Type Soundness. Information and Computation (1992).

	1 Introduction
	2 Ownership and Borrowing
	3 Comparison to earlier Oxide
	4 Metatheory
	Acknowledgments
	References

