
1

Oxide: The Essence of Rust

AARON WEISS, Northeastern University, USA
OLEK GIERCZAK, Northeastern University, USA
DANIEL PATTERSON, Northeastern University, USA
NICHOLAS D. MATSAKIS,Mozilla Research, USA
AMAL AHMED, Northeastern University, USA

Rust claims to advance industrial programming by bridging the gap between low-level systems programming
and high-level application programming. At the heart of the argument that this enables programmers to build
more reliable and efficient software is the borrow checker — a novel approach to ownership that aims to balance
type system expressivity with usability. And yet, to date there is no core type system that captures Rust’s
notion of ownership and borrowing, and hence no foundation for research on Rust to build upon.

In this work, we set out to capture the essence of this model of ownership by developing a type systems
account of Rust’s borrow checker. We present Oxide, a formalized programming language close to source-level

Rust (but with fully-annotated types). This presentation takes a new view of lifetimes as an approximation of
the provenances of references, and our type system is able to automatically compute this information through
a substructural typing judgment. We provide the first syntactic proof of type safety for borrow checking using
progress and preservation. Oxide is a simpler formulation of borrow checking — including recent features
such as non-lexical lifetimes — that we hope researchers will be able to use as the basis for work on Rust.

1 INTRODUCTION
The Rust programming language exists at the intersection of low-level “systems” programming
and high-level “applications” programming, aiming to empower the programmer with both fine-
grained control over memory and performance and high-level abstractions that make software
more reliable and quicker to produce. To accomplish this, Rust integrates decades of programming-
languages research into a production system. Most notably, this includes ideas from linear and
ownership types [Clarke et al. 1998; Girard 1987; Lafont 1988; Noble et al. 1998] and region-based
memory management [Fluet et al. 2006; Grossman et al. 2002]. Yet, Rust goes beyond prior art in
developing a particular discipline that aims to balance both expressivity and usability. As such, Rust
has something interesting to teach us about making ownership practical for programming.
But without a platform to build upon, it is difficult for researchers to learn, understand, and

investigate this new discipline. This is not a new problem though; the novelty of new languages has
often encouraged their formal study to learn precisely what they offer. Featherweight Java [Igarashi
et al. 2001] did just this — illuminating the language being studied and providing a foundation for
future research. This has inspired our own effort, and so we endeavor in this work to distill the
essence of Rust through our formalization, Oxide.

While there are some existing formalizations of Rust [Benitez 2016; Jung et al. 2018; Reed 2015],
none capture a high-level understanding of Rust’s essence (namely ownership and borrowing). The
first major effort, Patina [Reed 2015], formalized an early version of Rust predating much of the work
to simplify and streamline the language, and was unfinished. The next effort, Rusty Types [Benitez
2016], developed a formal calculus, Metal, which uses an algorithmic borrow checker that is less
expressive than both Rust and Oxide. The most complete effort to date is RustBelt [Jung et al. 2018]
which defines 𝜆Rust and takes a semantic approach to type soundness [Ahmed 2004; Ahmed et al.
2010; Milner 1978] to verify that major parts of Rust’s standard library (written using unsafe code)

Authors’ addresses: Aaron Weiss, Northeastern University, Boston, MA, 02115, USA, weiss@ccs.neu.edu; Olek Gierczak,
Northeastern University, Boston, MA, 02115, USA, gierczak.o@northeastern.edu; Daniel Patterson, Northeastern University,
Boston, MA, 02115, USA, dbp@dbpmail.net; Nicholas D. Matsakis, , Mozilla Research, Boston, MA, 02108, USA, nmatsakis@
mozilla.com; Amal Ahmed, Northeastern University, Boston, MA, 02115, USA, amal@ccs.neu.edu.

1:2 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

do not violate its safety guarantees. Yet, for our purposes, 𝜆Rust’s continuation-passing style and
low-level nature — closer to Rust’s Mid-level Intermediate Representation (MIR) — make it difficult
to use for source-level reasoning. Follow-on work by Jung et al. [2019] provides an operational
model called Stacked Borrows for memory accesses that is orthogonal to our efforts.

As we will see in the rest of the paper, Oxide is a much higher-level language. Its syntax bears a
close resemblance to that of Rust, and its semantics deals with an abstract notion of memory that
does not require us to pick a specific memory layout for each type. This is significant since Rust
as a language lacks a formal specification, and there are still ongoing discussions about memory
layout and validity guarantees in Rust’s unsafe code guidelines workgroup [2019]. Yet, Oxide
also takes steps to make the semantics simpler and easier to follow. In particular, we require the
types of bindings to be fully annotated in Oxide programs to avoid the orthogonal complexities of
type inference. Since we are interested in ownership, we focus on the safe portion of Rust without
standard library abstractions implemented using unsafe code. In Section 6.1, we discuss extensions
to Oxide that address this, including a sketch of heap allocation support with Rust’s Vec type.
Our efforts to develop Oxide have led us to three main contributions. First, we present Oxide

as the first formal account close to source-level Rust. Second, we provide the first syntactic type
safety [Wright and Felleisen 1992] result for Rust. Lastly, and most significantly, we note that
while Rust’s borrow-checking implementation relies on constraint generation and an algorithmic
constraint solver, we provide the first inductive definition of borrow checking. Our borrow-checking
definition builds on the view of lifetimes as approximations of the provenances of references, as
opposed to an abstraction of the lines of code where the referenced memory is live. Oxide is a tested
semantics in that we validate its faithfulness to rustc borrow checking on the subset of features
supported by Oxide using tests from Rust’s official borrow checker and non-lexical lifetimes test
suites. Ultimately, Oxide has allowed us to develop a more explainable essence of Rust.
The rest of the paper is organized as follows: §2 describes the essence of Rust and Oxide at an

intuitive level. §3 presents the formal details of Oxide including the syntax (§3.1), type system
(§3.2), operational semantics (§3.3), and metatheory (§3.4). §4 provides examples and evidence that
Oxide faithfully models Rust, including discussion (§4.3) of our Reducer from Rust to Oxide and a
type checker OxideTC used to validate that Oxide typechecking matches Rust on a subset of Rust’s
official test suite. We discuss related work in §5 and avenues for future work built on Oxide in §6.
The technical appendices include complete definitions (§A, §B, §C, §D), typing rules (§B.4), and

proofs (§E). Our implementation and test suite for our tested semantics are available on GitHub.

2 DATA THEY CAN CALL THEIR OWN
Nothing is yours. It is to use. It is to share.
If you will not share it, you cannot use it.

The Dispossessed

Ursula K. Le Guin

The essence of Rust lies in its novel approach to ownership and borrowing, which account for
the most interesting parts of the language’s static semantics and the justification for its claims
to memory safety and data race freedom. In this section, we explore ownership and borrowing
intuitively and how they are captured in Oxide.

2.1 Ownership
Rust’s notion of ownership rests atop a long lineage of work, harkening back to the early days
of linear logic [Girard 1987], and especially efforts by Wadler [1991] and Baker [1992] to develop
systems for functional programming without garbage collection. However, as noted by Wakeling
and Runciman [1991], Wadler’s effort relied greatly on pervasive copying. This reliance on copying

https://github.com/aatxe/oxide

Oxide: The Essence of Rust 1:3

and the associated performance penalty would not suffice for real world systems programming
efforts, and thus, Rust’s ownership model is best understood as instead building off of Baker’s work
on Linear Lisp where linearity enabled efficient reuse of objects in memory [Baker 1992, 1994a,b,
1995]. The resemblance is especially strong between Rust without borrowing and Baker’s ’use-once’
variables [Baker 1995]. We illustrate these ideas at work in Rust with the following example:

1 struct Point(u32, u32);
2 let mut pt = Point(6, 9);
3 let mut x = pt;
4 let mut y = pt; // ERROR: pt was already moved

In this example, we first declare a type Point that consists of a pair of unsigned 32-bit integers
(u32). Then, on line 2, we create a new Point bound to pt. Here, mut means that the binding for pt
can be reassigned. We say that this new value is owned by this identifier pt. Then, on line 3, we
transfer this ownership by moving the value from pt to x. After moving the value out of pt, we
invalidate this old name. Subsequently, when we attempt to use it again on line 4, we encounter
an error because pt was already moved in the previous line. With the exception of required type
annotations, this program is identical in Oxide, and similarly produces an error.

2.2 Borrowing
Rust’s main departure from techniques like ’use-once’ variables [Baker 1995] is a softening of a
rather stringent requirement: namely, that everything must be managed uniquely. Instead, Rust
allows the programmer to locally make a decision to use unique references [Minsky 1996] with
unguarded mutation or to use shared references without such mutation.1 This flexibility in choosing
arises at the point where the programmer creates a new reference, and draws inspiration from
work on ownership types and flexible alias protection [Clarke et al. 1998; Noble et al. 1998]. We
again illustrate its use in Rust with an example:

1 struct Point(u32, u32);
2 let mut pt = Point(6, 9);
3 let x = &pt;
4 let y = &pt; // no error, sharing is okay!

In the above example, we replaced themove expressions on lines 3 and 4 with borrow expressions
that each create a shared reference to pt. As noted in the comment, this program no longer produces
an error because the references allow precisely this kind of sharing. but one should note that this
sharing would be disallowed by a standard linear or affine type system. However, unlike with
just plain variable bindings (as in the previous example), we are unable to mutate through these
references, and attempts to do so would result in a compile-time error. Next, we will replace our
shared references with unique, mut-able ones instead:

1 struct Point(u32, u32);
2 let mut pt = Point(6, 9);
3 let x = &mut pt;
4 let y = &mut pt; // ERROR: cannot borrow pt as mutable twice
5 ... // additional code that uses x

In the example above, we have now chosen to create unique, rather than shared, references to
pt. However, since our program attempts to do so twice, we encounter an error similar to the one
we had in the first place — when we tried to move pt twice. The astute reader might notice that

1The use of “such” here is rather intentional as dynamically guarded mutation, e.g. using a Mutex, is still allowed through a
shared reference. Indeed, this is precisely what makes such guards useful when programming.

1:4 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

another important change happened — we added some additional code afterward that somehow
makes use of x. This is important because of a feature in Rust known as non-lexical lifetimes (or
NLL for short) [Matsakis 2016a; Turon et al. 2017]. With non-lexical lifetimes and no uses of x in
the ensuing code, the compiler would figure out that the uniqueness of unique references would
not really be violated since x is never used, and thus the program is able to pass the borrow checker.

Similar to the last example, the borrow checker also prevents us from mixing mut-able references
(which ought to be unique) with shared references, as in the following example:

1 struct Point(u32, u32);
2 let mut pt: Point = Point(6, 9);
3 let x: &'a mut Point = &mut pt;
4 let y: &'b Point = &pt;
5 // ^~~
6 // ERROR: cannot borrow pt while a mutable loan is live
7 ... // additional code that uses x and y

In this case, we’ve changed the borrow expression on line 4 to create a shared, rather than unique,
reference. We’ve also chosen to add explicit type annotations to our bindings on lines 2–4. This
again produces an error because Rust forbids the creation of a shared reference while a mutable
loan exists. Here, we use the word loan to refer to the state introduced in the borrow checker
(which records that the loan’s uniqueness and its origin) by the creation of a reference. Regions2 in
Rust (denoted 'a, 'b, etc.) can be understood as collections of these loans which together statically
approximate which pointers could be used dynamically at a particular reference type. This is the
sense in which Rust’s regions are distinct from the existing literature on region-based memory
management [Fluet et al. 2006; Grossman et al. 2002; Tofte and Talpin 1994, 1997].
While we were unable to create a second reference to the same place as an existing unique

reference in our past examples, Rust allows the programmer to create two unique references to
disjoint paths within the same object, as in the following example:

1 struct Point(u32, u32);
2 let mut pt: Point = Point(6, 9);
3 let x: &'a mut u32 = &mut pt.0;
4 let y: &'b mut u32 = &mut pt.1;
5 // no error, our loans don't overlap!

In this example, we’re borrowing from specific paths within pt (namely, the first and second
projections respectively). Since these paths give a name to the places being referenced, we refer to
them as places. Here, we see Rust employs a fine-grained notion of ownership that allows unique
loans against non-overlapping places within aggregate structures (like structs, enums, and tuples).
Intuitively, this is safe because the parts of memory referred to by each place (in this case, pt.0
and pt.1) do not overlap, and thus they represent portions that can each be uniquely owned.
Rust allows supports an additional pattern that weakens conventional notions of flexible alias

protection. In particular, Rust allows the programmer to create a unique reference by borrowing
from one they already have. However, the programmer is unable to use the old reference until the
reborrowed one ends. We can see this reborrowing at work in the following example:

1 struct Point(u32, u32);
2 let mut pt: Point = Point(6, 9);
3 let x: &'a mut u32 = &mut pt.0;

2Historically, Rust has used the term lifetime, rather than region, but recent efforts on a borrow checker rewrite called
Polonius have transitioned to using the term region [Matsakis 2018]. We discuss Polonius further in §4.4.

Oxide: The Essence of Rust 1:5

4 let y: &'b mut u32 = &mut *x;
5 // can use y, cannot use x until we drop y

In this example, we borrow the first projection of pt (pt.0) and then reborrow it by creating a
borrow to *x. We then can use y in the continuation, but won’t be able to use x until y is dropped.

2.3 Formalizing Rust
Notably, in Oxide, these programs are largely unchanged. The main differences from Rust are
threefold. First, we annotate the type of every binding, including adding bindings and annotations
for local lifetime variables. Second, acknowledging that mut plays two distinct roles in Rust, we
focus on its essential use (as a qualifier for the uniqueness of a reference), and removed the syntactic
restriction on reassigning a binding. That is, while Rust allows the programmer to mark let bindings
as mut to enable the bound variable to be reassigned, we omit this annotation, and allow all bindings
to be mutated when it is safe to do so. Finally, we shift the conceptual terminology we use to
discuss regions/lifetimes. In particular, as regions here approximate the origin of references, we
choose a more precise term, approximate provenances, and refer to their variable form ('a, 'b, etc.)
as provenance variables. Translating our last example into Oxide gives us the following:

1 struct Point(u32, u32);
2 letprov<'x, 'y> {
3 let pt: Point = Point(6, 9);
4 let x: &'x uniq u32 = &'x uniq pt.0;
5 let y: &'y uniq u32 = &'y uniq pt.1;
6 }
7 // no error, our loans don't overlap

Here, our type annotations on lines 3–5 (i.e. for each let binding) are now required, and we
replaced mut and the lack of an annotation with two qualifiers uniq and shrd respectively. We also
annotate the references with the local provenance 'x and 'y which themselves are introduced by
the new letprov binding on line 2. The remainder of the program is otherwise unchanged. As in
the Rust version, the Oxide version type checks without error because the origins of the loans are
disjoint. That is, x can only have originated from pt.0 and y only from pt.1.
During type-checking, Oxide will track sets of loans for the provenance variables bound with

letprov (i.e., 'x and 'y). Specifically, after line 4, 'x will be mapped to the loan set { uniqpt.0 }
and, after line 5, 'y will be mapped to { uniqpt.1 }. Moreover, when type-checking each borrow
expression, Oxide looks at the existing loans in its environment to determine that all of the live
loans (e.g., between line 4 and 5, the live loans are just the loans that 'x maps to) are disjoint from
the place being borrowed (which on line 5 is pt.1). At runtime, the program evaluates with a stack
𝜎 that satisfies an environment Γ. That is, 𝜎 maps variables to values whose types are given in Γ.

Information Loss. Though all the examples we’ve discussed thus far have a precise origin for
every reference, provenances are, in general, approximate due to join points in the program. For
example, in an if expression, we might create some new set of loans in one branch, and a different
set of loans in the other branch. To ensure that the system is sound, we need to be conservative
and act as if both sets of loans are live. As such, we combine the environments from each side of
the branch. We will come back to this with a more formal treatment in §3.2.

2.4 Oxide, More Formally
We’ve now seen enough to start to describe Oxide in more formal detail. First, we note that since
information about loans must flow between expressions, we must somehow be able to track this
flow in our type system. To do so, we use a typing judgment in an environment-passing style. The

1:6 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

T-Move
Δ; Γ ⊢uniq 𝜋 ⇒ { uniq𝜋 }

Γ (𝜋) = 𝜏si noncopyableΣ 𝜏
si

Σ; Δ; Γ ⊢ 𝜋 : 𝜏si ⇒ Γ [𝜋 ↦→ 𝜏si
†]

T-Borrow
Γ (𝑟) = ∅ Δ; Γ ⊢𝜔 𝑝 ⇒ { ℓ }

Δ; Γ ⊢𝜔 𝑝 : 𝜏xi

Σ; Δ; Γ ⊢ &𝑟 𝜔 𝑝 : &𝑟 𝜔 𝜏xi ⇒ Γ [𝑟 ↦→ { ℓ }]

Fig. 1. The essence of Oxide.

shape of our judgment is Σ; Δ; Γ ⊢ 𝑒 : 𝜏 ⇒ Γ′, where Σ is the global environment denoting the
top-level function definitions of the program, Δ is the type environment tracking in-scope type and
provenance variables and their kinds, and Γ is the stack typing mapping both variables to their types
and provenances to their associated loan sets. The output environment Γ′ denotes the stack typing
to use when type checking expressions after this one. This is essential in capturing the substructural
aspects of Oxide as 𝑒 may “consume resources”, changing ownership/borrowing state from Γ to Γ′.

Places and Place Expressions. Before we can look at some typing rules, there is one remaining piece
to understand: the distinction between places 𝜋 and place expressions 𝑝 . While places give a name
to a precise part of memory (e.g., pt or pt.0, which gives a path through a struct), place expressions
also include dereferences of places (e.g., ∗x or (∗x).1. This dereferencing is the source of the gap
in their meaning — since a reference’s provenance can only be statically known approximately, a
place expression during type-checking has to be thought of as representing potentially many places.
We’ll see later that places alone aren’t enough to describe all abstract addresses in Oxide that arise
at runtime — we will need to generalize places to a richer address abstraction that we call referents
(§3.3) which subsume places. Each reference will be represented as a pointer to a specific referent,
and so place expressions 𝑝 at runtime will always be directly evaluated to a single referent R.

Borrow Checking. In Figure 1, we see two typing rules that capture the essence of how Oxide
models Rust’s ownership semantics, but to understand them, we’ll need to understand the crucial
ownership safety judgment in their premises: Δ; Γ ⊢𝜔 𝑝 ⇒ { 𝜔𝑝 }. We can read it as saying “in the
environments Δ and Γ, it is safe to use the place expression 𝑝 𝜔-ly,” where 𝜔 is either uniq or shrd.
That is, if we have a derivation where 𝜔 is uniq, we know that we can use the place expression 𝑝

uniquely because we have a proof that there are no live loans against the section(s) of memory
that 𝑝 represents. T-Move checks if 𝜋 is uniq-ly safe because we know that it is only safe to move a
value out of the environment when there are no aliases to it.

Further, when we have a derivation where 𝜔 is shrd, we know that we can use the place
expression 𝑝 sharedly because we have a proof that there are no live unique loans against the
section(s) of memory that 𝑝 represents. In the case of borrowing (as in T-Borrow), these two
meanings correspond exactly to the intuition behind when an 𝜔 borrow is safe, and the loan-set
output from the derivation (called a borrow chain) tells us what loans this use of 𝑝 will create.

Since it is precisely this ownership safety judgment that captures the essence of Rust’s ownership
semantics, we understand Rust’s borrow checking system as ultimately being a system for statically
building a proof that data in memory is either uniquely owned (and thus able to allow unguarded
mutation) or collectively shared, but not both. To do so, intuitively, ownership safety looks at all
of the provenances found within Γ, and ensures that all the loans they contain are not in conflict
with the place expression 𝑝 in question. For a uniq borrow, a conflict occurs if any loan maps to
an overlapping place, but for a shrd borrow, a conflict occurs only when a uniq loan maps to an
overlapping place. Now, this intuition provides only a partial picture since ownership safety must
do more in order to support reborrowing; we return to these details in §3.2.

Oxide: The Essence of Rust 1:7

2.5 Non-Lexical Lifetimes in Oxide
In Oxide, we allow non-lexical lifetimes through a restricted form of weakening provided by the rule
T-Drop. To illustrate how T-Drop in combination with our environment-passing typing judgment
enables non-lexical lifetimes, let us consider a variant of an earlier example where we produce two
unique pointers, but our first unique pointer is instead not used in the remainder of the program:

1 struct Point(u32, u32);
2 letprov<'x, 'y> {
3 let pt: Point = Point(6, 9);
4 let x: &'x uniq Point = &'x uniq pt;
5 let y: &'y uniq Point = &'y uniq pt;
6 ... // additional code using y, but not x
7 }

T-Drop
Γ (𝜋) = 𝜏si𝜋

Σ; Δ; Γ [𝜋 ↦→ 𝜏si
†

𝜋] ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Σ; Δ; Γ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Normally, when we attempt to type check the expression being bound to y with x still bound, we
are unable to type check the expression for y since it would produce a second ostensibly “unique”
reference to pt. However, we can drop x from our context by marking it dead, ending all of the loans
in 'x, and allowing us to successfully proceed with the rest of the program. This corresponds to a
bottom-up reading of our T-Drop rule, shown to the right of the example. The notation Γ [𝜋 ↦→ 𝜏si

†
𝜋]

in the premise captures marking the type of 𝜋 as dead After applying this rule, if x was used in the
rest of the program, we would encounter a new point where we cannot make a typing derivation
since our typing rules do not allow us to use variables at dead types. However, since x is not used,
the rest of the program will succeed since it necessarily did not depend on x’s existence. Intuitively,
this rule says references that are no longer used may as well not exist.

In the rest of the paper, we explore the formalism in more detail along with the possibilities and
consequences of this new model for Rust.

3 OXIDE
We now present Oxide formally. The remaining formal details are present in the appendices,
including the syntax (§A), statics (§B), including all typing rules (§B.4), well-formedness rules (§B.1)
and additional judgments (§B.5), metafunctions (§C), and the complete operational semantics (§D).

3.1 Syntax
Figure 2 presents most of the syntax of Oxide. In Oxide, we annotate references with ownership
qualifiers 𝜔 , indicating whether the reference is shared (shrd) or unique (uniq). We use these
rather than their equivalents in Rust (no annotation and mut respectively) because the terms more
accurately reflect the semantic focus on aliasing, rather than mutation. Indeed, in Rust, a value of
the type &&mut u32 cannot be mutated (because we have a shared reference to a unique reference),
and a value of the type &Cell<u32>3 can be mutated through the method Cell::set. In this sense,
the official name mut in Rust should be thought of as an accident of history, rather than something
that appropriately reflects intuitions about how the language works.

Places and Place Expressions. As discussed at a high-level in §2.2, place expressions 𝑝 and places
𝜋 are names for paths from a particular variable to a particular part of the object stored there,
whether that be a field of a struct, or a projection of a tuple. One might think of place expressions
as a sort of syntactic generalization of variables. They are analogous to what are called lvalues
in C. Place expression contexts 𝑝□ are used in various parts of the formalism to decompose place
expressions 𝑝 into an innermost dereferenced place, ∗𝜋 , and an outer context 𝑝□.

3Cell<T> is a Rust standard library type that provides a “mutable memory location” that allows mutation in its API.

1:8 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Variables 𝑥 Functions 𝑓 Type Vars. 𝛼 Frame Vars. 𝜑

Concrete Prov. 𝑟 Abstract Prov. 𝜚 Strings str Naturals 𝑚,𝑛, 𝑘

Path 𝑞 F 𝜖 | 𝑛.𝑞
Places 𝜋 F 𝑥 .𝑞

Place Expressions 𝑝 F 𝑥 | ∗ 𝑝 | 𝑝.𝑛
Place Expression Contexts 𝑝□ F □ | ∗ 𝑝□ | 𝑝□ .𝑛

Provenances 𝜌 F 𝜚 | 𝑟
Ownership Qualifiers 𝜔 F shrd | uniq
Loans ℓ F 𝜔𝑝

Kinds 𝜅 F ★ | PRV | FRM
Base Types 𝜏b F bool | u32 | unit
Sized Types 𝜏si F 𝜏b | 𝛼 | &𝜌 𝜔 𝜏xi | [𝜏si; 𝑛] | (𝜏si1 , . . . , 𝜏si𝑛)

| ∀<𝜑 , 𝜚 , 𝛼>(𝜏si1 , . . . , 𝜏si𝑛) Φ→ 𝜏si𝑟 where 𝜚1 : 𝜚2
Maybe Unsized Types 𝜏xi F 𝜏si | [𝜏si]
Dead Types 𝜏sd F 𝜏si

† | (𝜏sd1 , . . . , 𝜏sd𝑛)
Maybe Dead Types 𝜏sx F 𝜏si | 𝜏sd | (𝜏sx1 , . . . , 𝜏sx𝑛)
Types 𝜏 F 𝜏xi | 𝜏sx

Constants 𝑐 F () | 𝑛 | true | false
Expressions 𝑒 F 𝑐 | 𝑝 | &𝑟 𝜔 𝑝 | &𝑟 𝜔 𝑝 [𝑒] | &𝑟 𝜔 𝑝 [𝑒1 ..𝑒2] | 𝑝 ≔ 𝑒

| letprov <𝑟> { 𝑒 } | let 𝑥 : 𝜏si = 𝑒1; 𝑒2 | 𝑒1; 𝑒2
| |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } | 𝑒𝑓 ::<Φ , 𝜌 , 𝜏si>(𝑒1 , . . . , 𝑒𝑛)
| if 𝑒1 { 𝑒2 } else { 𝑒3 } | [𝑒1 , . . . , 𝑒𝑛] | (𝑒1 , . . . , 𝑒𝑛)
| 𝑝 [𝑒] | for 𝑥 in 𝑒1 { 𝑒2 } | while 𝑒1 { 𝑒2 } | abort!(str)

Frame Expressions Φ F 𝜑 | F

Global Environment Σ F • | Σ , 𝜀
Global Entries 𝜀 F fn 𝑓 <𝜑 , 𝜚 , 𝛼>(𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛) → 𝜏si𝑟 where 𝜚1 : 𝜚2 { 𝑒 }

Type Environment Δ F • | Δ , 𝛼 : ★ | Δ , 𝜚 : PRV | Δ , 𝜑 : FRM | Δ , 𝜚 :> 𝜚 ′

Frame Typing F F • | F , 𝑥 : 𝜏sx | F , 𝑟 ↦→ { ℓ }
Stack Typing Γ F • | Γ ♮ F

Fig. 2. Syntax of Oxide

Provenances. Provenances 𝜌 have two forms: abstract provenances 𝜚 (pronounced var-rho) and
local provenances 𝑟 . Abstract provenances correspond to lifetime variables 'a, 'b, etc. in Rust,
and are used polymorphically in function types to indicate that they are agnostic to the particular
provenances of references. Local provenances, by contrast, carry concrete information in the stack
typing Γ consisting of a set of loans. A loan 𝜔𝑝 indicates a possible origin (𝑝), qualified by whether
the loan is unique or shared (𝜔). Intuitively, each loan tells us a single possible origin for a reference,
while a provenance maps to all possible origins. As we will see in §3.2, provenances are essential to
enabling our type system to guarantee the correct use of unique and shared references.

Types and Kinds. Oxide has three kinds 𝜅: the kind of ordinary types ★, the kind of provenances
PRV, and the kind of frame typings FRM. (Frame typings are relevant for closures, as we’ll see below.)
We abstract over variables of each kind in Oxide and, to aid the reader, we have separate syntax for
each: 𝛼 , 𝜚 , and 𝜑 , respectively. Since Rust is a fairly low-level language, Oxide makes a syntactic

Oxide: The Essence of Rust 1:9

distinction4 between a few different sorts of types: sized & initialized types 𝜏si, maybe-unsized &
initialized types 𝜏xi, sized & dead types 𝜏sd, and sized & maybe-dead types 𝜏sx. Note that slices
[𝜏si] are the only unsized type as they represent dynamically-sized segments of an array.
The bulk of types in Oxide are sized & initialized types, which include base types 𝜏b, type

variables 𝛼 , arrays [𝜏si; 𝑛], tuple types (𝜏si1 , . . . , 𝜏si𝑛), reference types &𝜌 𝜔 𝜏xi, and function types

∀<𝜑 , 𝜚 , 𝛼>(𝜏si1 , . . . , 𝜏si𝑛)
Φ→ 𝜏si𝑟 where 𝜚1 : 𝜚2. With the exception of references, any types that

occur within these types are themselves required to be both sized and initialized.
The two interesting types here are reference and function types. For reference types &𝜌 𝜔 𝜏xi, we

include both the provenance 𝜌 and ownership qualifier 𝜔 in the type which allow us to understand
statically both a reference’s origin as well as its aliasing requirements. We allow potentially unsized
types under references since the reference itself will always have a fixed size regardless of what
it points to (e.g. 64-bit on a 64-bit machine). For function types, there are three notable features.
First, each function type can possibly include a frame expression Φ over the arrow indicating what
bindings, if any, were caught up in the closed environment (when nothing is captured, we put
nothing over the arrow). Next, functions are polymorphic in type and provenance variables, as well
as in frame variables 𝜑 to enable the use of higher-order functions. Finally, functions can relate
types with abstract provenances using outlives bounds, where 𝜚1 : 𝜚2 means 𝜚1 outlives 𝜚2.

Expressions. Expressions 𝑒 in Oxide are numerous, but largely standard. For example, our con-
stants 𝑐 consist of the unit value (), unsigned 32-bit integers 𝑛, and boolean values true and
false. The most interesting expressions in Oxide are the ones we’ve already seen by example:
place expression usage (written simply 𝑝) and borrowing (with several forms that we will explain
shortly). The former should be thought of like variable expressions that behave linearly (removing
the place from the environment after use) for non-copyable types, and traditionally for copyable
types. There are three borrowing forms overall, and all work fundamentalley the same — they are
each used as introduction forms for references. The simplest case is written &𝑟 𝜔 𝑝 , introducing an
𝜔-reference with provenance 𝑟 directly to the place 𝜋 that the place expression 𝑝 evaluates to. The
next form borrows from 𝑝 [𝑒] instead of simply 𝑝 , and is used to borrow an element out of an array
or slice 𝑝 at the index given by 𝑒 . The final form borrows from 𝑝 [𝑒1..𝑒2], and is used to borrow a
slice of 𝑝 using the range given by 𝑒1 and 𝑒2.

In these last two cases, one might wonder “why are indexing and slicing not places themselves?”
The answer comes in two parts: (1) indexing and slicing take arbitrary expressions, while places
are entirely static, and (2) unlike tuple projections which have a fine-grained notion of ownership,
indexing and slicing affect the ownership of the array or slice overall. This second part means that
while you can create two unique references to different projections of the same tuple, you cannot
create two unique references to different indices of an array.

The remainder of our expressions are standard or discussed already, but we will draw attention
to a few points of note. Our closure syntax follows the syntax of Rust, and thus uses vertical bars to
denote the closure’s parameters. As in Rust, closures are not polymorphic; only global functions may
be polymorphic and specify outlives bounds. We use function application when applying closures as
well as global functions. Hence, function application additionally includes polymorphic instantiation
written using Rust’s turbofish syntax (::<>). Finally, abort!(str) indicates irrecoverable failure,
and thus terminates the program with the given string as a diagnostic message.
Several expressions have subexpressions 𝑒 , which denote sequenceless expressions (grammar

elided). These are identical to expressions except that they may not contain any (nested) sequencing

4One may wonder why these types don’t all have their own kinds. Since type polymorphism is restricted to sized & initialized
types, we have not needed additional kinds. We could support more rich type polymorphism by enriching the kind system.

1:10 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

or let expressions. This allows us to control the effects that happen to our stack typing between
expressions that should be thought of statically as evaluating at the same time.

Environments. As we have already seen in §2.4, we have three environments for type-checking
in Oxide. First, we have a global environment Σ that consists of top-level function definitions. Next,
we have a type environment Δ that contains type variables 𝛼 , provenance variables 𝜚 , and frame
variables 𝜑 , with their respective kinds. Additionally, it tracks outlives relations 𝜚 :> 𝜚 ′, which
correspond directly to the outlives bounds in function definitions and types.
Finally, we have a stack typing Γ which is organized as a sequence of frame typings F . Frame

typings track in-scope variable bindings 𝑥 and their types, as well as in-scope local provenances 𝑟
and their corresponding loan sets. The information in the stack and frame typing together describes
the shape and validity of the stack 𝜎 at runtime. The separation into frames is useful for closures:
when typing a closure in environment Γ, we add a new frame with appropriate bindings to the end
of Γ to type-check the body of the closure. We assume that all variables 𝑥 and provenances 𝑟 in Γ
are unique (no reuse/shadowing allowed, and we assume implicit alpha-renaming to enforce name
uniqueness). More significantly, Γ and F are ordered. We rely on the ordering and on frames in
several ways as we’ll point out — e.g., when deciding if one provenance 𝑟 outlives another and to
ensure we only drop places in the current frame.

3.2 Type System
Figure 3 presents a selection of Oxide typing rules. In every rule, we highlight the expression
being typechecked with a framebox . As described in §2.4, the shape of our typing judgement is
Σ; Δ; Γ ⊢ 𝑒 : 𝜏 ⇒ Γ′: we type-check 𝑒 in environments Σ, Δ, and Γ, producing Γ′ which is the
stack typing for the continuation of 𝑒 . These rules rely on the subtyping and outlives judgments
(Figure 5) and the ownership safety judgment (Figure 4), which we’ll discuss below. We elide the
various well-formedness judgments (for types, stack typings, etc.); see the appendix (§B.1).

Moving. The T-Move rule, which was first introduced in §2.4, type-checks place usage that must
move the value out of 𝜋 . Here, we are restricted to places, rather than the more general place
expressions because Rust disallows moving values from under references. As such, it requires three
things: (1) 𝜋 must be able to be used uniq-ly (checked using the ownership safety judgment in
Figure 4, discussed later); (2) 𝜋 must have a sized type 𝜏si in Γ; and (3) the type of 𝜋 is noncopyable.
Requirement (1) is needed to ensure that we do not invalidate any existing references to 𝜋 by
moving it. Requirement (3) says we should use T-Copy, which is more permissive, when 𝜋 has a
copyable type. When the premises hold, the output environment updates the type of 𝜋 to include
a dagger — marking it dead — reflecting that it has been moved after type-checking the expression.

If the type is instead copyable,5 we use T-Copy which requires that 𝑝 is safe to use as shrd. We
leave the output environment unchanged since the value will be copied from the stack at runtime.

Borrowing. In §2.4, we also introduced T-Borrow, which requires that the place expression 𝑝 be
safe to use (again checked with ownership safety, Figure 4), and if so, updates the loan set for 𝑟 to
incorporate the new borrow chain { ℓ } from ownership safety. It is important to note that although
simple uses of T-Borrow (such as directly borrowing a newly-bound variable) only introduce trivial
provenances — in general, these provenances are approximate. We will see below how they are
combined via subtyping (Figure 5) and when type-checking branches to yield larger loan sets.

5We’ve elided definitions of copyable and noncopyable, but they’re straightforward. Intuitively, a type is safe to copy if
none of its constituent parts are unique. Thus, all types that don’t contain a unique reference are copyable. Generic types
are always non-copyable. In Rust, copyable is actually the Copy trait, but copyable can be thought of as special casing it.

Oxide: The Essence of Rust 1:11

Σ; Δ; Γ ⊢ 𝑒 : 𝜏 ⇒ Γ′

T-Move
Δ; Γ ⊢uniq 𝜋 ⇒ { uniq𝜋 }

Γ (𝜋) = 𝜏si noncopyableΣ 𝜏
si

Σ; Δ; Γ ⊢ 𝜋 : 𝜏si ⇒ Γ [𝜋 ↦→ 𝜏si
†]

T-Copy
Δ; Γ ⊢shrd 𝑝 ⇒ { ℓ }

Δ; Γ ⊢shrd 𝑝 : 𝜏si copyableΣ 𝜏
si

Σ; Δ; Γ ⊢ 𝑝 : 𝜏si ⇒ Γ

T-Borrow
Γ (𝑟) = ∅ Δ; Γ ⊢𝜔 𝑝 ⇒ { ℓ }

Δ; Γ ⊢𝜔 𝑝 : 𝜏xi

Σ; Δ; Γ ⊢ &𝑟 𝜔 𝑝 : &𝑟 𝜔 𝜏xi ⇒ Γ [𝑟 ↦→ { ℓ }]

T-Branch
Σ; Δ; Γ ⊢ 𝑒1 : bool ⇒ Γ1 Σ; Δ; Γ1 ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ1 ⊢ 𝑒3 : 𝜏si3 ⇒ Γ3 𝜏si = 𝜏si2 ∨ 𝜏si = 𝜏si3
Δ; Γ2 ⊢ 𝜏si2 ≲ 𝜏si ⇒ Γ′2 Δ; Γ3 ⊢ 𝜏si3 ≲ 𝜏si ⇒ Γ′3 Γ′2 ⋓ Γ′3 = Γ′

Σ; Δ; Γ ⊢ if 𝑒1 { 𝑒2 } else { 𝑒3 } : 𝜏si ⇒ Γ′

T-Seq
Σ; Δ; Γ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1

Σ; Δ; gc-loans(Γ1) ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ ⊢ 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

T-Let
Σ; Δ; Γ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1 Δ; Γ1 ⊢ 𝜏si1 ≲ 𝜏si𝑎 ⇒ Γ′1

Σ; Δ; gc-loans(Γ′1 , 𝑥 : 𝜏si𝑎) ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 , 𝑥 : 𝜏sd

Σ; Δ; Γ ⊢ let 𝑥 : 𝜏si𝑎 = 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

T-LetProv
Σ; Δ; Γ , 𝑟 ↦→ {} ⊢ 𝑒 : 𝜏si ⇒ Γ′ , 𝑟 ↦→ {ℓ }

Σ; Δ; Γ ⊢ letprov <𝑟> { 𝑒 } : 𝜏si ⇒ Γ′

T-Assign
Σ; Δ; Γ ⊢ 𝑒 : 𝜏si ⇒ Γ1 Γ1 (𝜋) = 𝜏sx

(𝜏sx = 𝜏sd ∨ Δ; Γ1 ⊢uniq 𝜋 ⇒ { uniq𝜋 })
Δ; Γ1 ⊢ 𝜏si ≲ 𝜏sx ⇒ Γ′

Σ; Δ; Γ ⊢ 𝜋 ≔ 𝑒 : unit ⇒ Γ′ [𝜋 ↦→ 𝜏si] ▷− 𝜋

T-AssignDeref
Σ; Δ; Γ ⊢ 𝑒 : 𝜏si𝑛 ⇒ Γ1 Δ; Γ1 ⊢uniq 𝑝 : 𝜏si𝑜

Δ; Γ1 ⊢uniq 𝑝 ⇒ { ℓ } Δ; Γ1 ⊢ 𝜏si𝑛 ≲ 𝜏si𝑜 ⇒ Γ′

Σ; Δ; Γ ⊢ 𝑝 ≔ 𝑒 : unit ⇒ Γ′ ▷− 𝑝

T-Closure
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 free-nc-varsΓ (𝑒) = 𝑥𝑛𝑐 𝑟 = free-provs(Γ (𝑥𝑓)) , free-provs(𝑒)

F𝑐 = 𝑟 ↦→ Γ (𝑟) , 𝑥𝑓 : Γ (𝑥𝑓) Σ; Δ; Γ [𝑥𝑛𝑐 ↦→ Γ (𝑥𝑛𝑐)†] ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ ⊢ |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } : (𝜏si1 , . . . , 𝜏si𝑛) F𝑐→ 𝜏si𝑟 ⇒ Γ′

T-App
Σ; Δ; Γ ⊢ Φ Δ; Γ ⊢ 𝜌 Σ; Δ; Γ ⊢ 𝜏si

Σ; Δ; Γ ⊢ 𝑒𝑓 : ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛) Φ𝑐→ 𝜏si
𝑓
where 𝜚1 : 𝜚2 ⇒ Γ0

∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 [Φ/𝜑] [𝜌/𝜚] [𝜏si/𝛼] ⇒ Γ𝑖 Δ; Γ𝑛 ⊢ 𝜚2 [𝜌/𝜚] :> 𝜚1 [𝜌/𝜚] ⇒ Γ𝑏

Σ; Δ; Γ ⊢ 𝑒𝑓 ::<Φ , 𝜌 , 𝜏si> (𝑒1 , . . . , 𝑒𝑛) : 𝜏si
𝑓
[Φ/𝜑] [𝜌/𝜚] [𝜏si/𝛼] ⇒ Γ𝑏

T-True

Σ; Δ; Γ ⊢ true : bool ⇒ Γ

T-False

Σ; Δ; Γ ⊢ false : bool ⇒ Γ

T-u32

Σ; Δ; Γ ⊢ 𝑛 : u32 ⇒ Γ

T-Tuple
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 ⇒ Γ𝑖

Σ; Δ; Γ0 ⊢ (𝑒1 , . . . , 𝑒𝑛) : (𝜏si1 , . . . , 𝜏si𝑛) ⇒ Γ𝑛

T-While
Σ; Δ; Γ ⊢ 𝑒1 : bool ⇒ Γ1 Σ; Δ; Γ1 ⊢ 𝑒2 : unit ⇒ Γ2

Σ; Δ; Γ2 ⊢ 𝑒1 : bool ⇒ Γ2 Σ; Δ; Γ2 ⊢ 𝑒2 : unit ⇒ Γ2

Σ; Δ; Γ ⊢ while 𝑒1 { 𝑒2 } : unit ⇒ Γ2

T-Abort

Σ; Δ; Γ ⊢ abort!(str) : 𝜏sx ⇒ Γ′

T-Drop
Γ (𝜋) = 𝜏si𝜋 Σ; Δ; Γ [𝜋 ↦→ 𝜏si

†
𝜋] ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Σ; Δ; Γ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Fig. 3. Selected Oxide Typing Rules

1:12 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Δ; Γ ⊢𝜋𝜔 𝑝 ⇒ { 𝜔𝑝 } where Δ; Γ ⊢𝜔 𝑝 ⇒ { 𝜔𝑝 } means Δ; Γ ⊢•𝜔 𝑝 ⇒ { 𝜔𝑝 }.

O-SafePlace
∀𝑟 ′ ↦→ { ℓ } ∈ Γ. (∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝜋 ′ #𝜋)
∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ. 𝜋 ′ ∈ { 𝜋𝑒 }))

Δ; Γ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }

O-Deref
Γ (𝜋) = &𝑟 𝜔𝜋 𝜏𝜋 Γ (𝑟) = { 𝜔′

𝑝𝑖 } 𝑝𝑖 = 𝑝□
𝑖
[𝜋𝑖] 𝜔 ≲ 𝜔𝜋

∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ ⊢𝜋𝑒 , 𝜋𝑖 , 𝜋
𝜔 𝑝□ [𝑝𝑖] ⇒ { 𝜔𝑝′

𝑖
}

∀𝑟 ′ ↦→ { ℓ } ∈ Γ. (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ. 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋𝑖 , 𝜋 }))

Δ; Γ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋] ⇒ { 𝜔𝑝′1 , . . . 𝜔𝑝′𝑛 , 𝜔𝑝□ [∗𝜋] }

O-DerefAbs
Γ (𝜋) = &𝜚 𝜔𝜋 𝜏𝜋 Δ; Γ ⊢𝜔 𝑝□ [∗𝜋] : 𝜏 𝜔 ≲ 𝜔𝜋

∀𝑟 ′ ↦→ { ℓ } ∈ Γ. (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ. 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋 }))

Δ; Γ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋] ⇒ { 𝜔𝑝□ [∗𝜋] }

Fig. 4. Ownership Safety in Oxide

Ownership Safety. Figure 4 presents the rules for ownership safety, which we’ve already explained
at a high level in §2.4. What we did not explain earlier is how ownership safety handles reborrowing.
The full form of the judgment is Δ; Γ ⊢𝜋𝜔 𝑝 ⇒ { 𝜔𝑝 }, which says that 𝑝 is 𝜔-safe under Δ and Γ,
with reborrow exclusion list 𝜋 , and may point to any of the loans in 𝜔𝑝 (called the borrow chain).
The first rule, O-SafePlace, checks if a place 𝜋 is 𝜔-safe by looking at each loan in every provenance
𝑟 ′ in Γ and either (1) making sure that if either that loan or 𝜔 is uniq then 𝜋 does not overlap with
the loan; or (2) checking that all references in Γ with provenance 𝑟 ′ are in the reborrow exclusion
list (meaning we need not check if there is overlap with 𝜋).

The next two rules check if a place expression 𝑝 is 𝜔-safe, decomposing the place expression into
a place expression context 𝑝□ with ∗𝜋 in the hole. The last two lines of premises for both essentially
ensure that either (1) or (2) holds, but each one adds to the incoming reborrow exclusion list when
checking (2) by collecting any additional places dereferenced in 𝑝 . Both rules also check 𝜔 ≲ 𝜔𝜋

(defined as the reflexive closure of shrd ≲ uniq) in order to ensure that the reference has sufficient
permission to be used, preventing a dereference of a uniq reference in a shrd context.
Unlike O-DerefAbs, O-Deref is dereferencing a reference 𝜋 with a concrete provenance 𝑟 . As

such, we can look at the loans present for 𝑟 in the stack typing. These loans consist of both direct
loans to places 𝜋𝑖 which correspond to a possible origin for the reference, and indirect loans to place
expressions 𝑝𝑖 which capture how this reference was reborrowed from other references. As such,
when we recursively check for the safety of these origins, we append the reborrow origins (the 𝜋𝑖
prefixes of these 𝑝𝑖) to the reborrow exclusion list. This means that they will not be considered as
possible conflicts in the rest of ownership safety. At the end, we union together the borrow chains
from all the possible origins to determine our final borrow chain. We also include an additional
loan 𝜔𝑝□ [∗𝜋] to indicate that this use was reborrowed from ∗𝜋 .

Subtyping and Outlives. We examine subtyping next (Figure 5) since some of the typing rules
discussed below require it. The subtyping judgment Δ; Γ ⊢ 𝜏1 ≲ 𝜏2 ⇒ Γ′ says 𝜏1 is a subtype of
𝜏2 under Δ and Γ, producing Γ′. We produce an output Γ′ with updated provenances to be used

Oxide: The Essence of Rust 1:13

when typing the continuation after an appeal to subtyping. Note that our subtyping judgment is
not allowed arbitrarily, but instead is used specifically in T-Let and T-Branch.
Subtyping is largely standard excepting the output stack typing: it is reflexive and transitive;

covariant for arrays, slices, tuples, and shared references; non-variant for unique references which
support mutation. A reference type is a subtype of another if the provenance on the subtype outlives
the provenance on the supertype (S-SharedRef and S-UniqeRef).
The outlives judgment (Figure 5) Δ; Γ ⊢ 𝜌1 :> 𝜌2 ⇒ Γ′ says 𝜌1 outlives 𝜌2 under Δ and

Γ, producing Γ′. Every provenance outlives itself (reflexivity). An abstract provenance outlives
another if there’s a corresponding outlives relation in Δ (OL-AbstractProvenances) or if we can
transitively put together outlives relations from Δ (OL-Trans). 6 OL-LocalProvenances says that 𝑟1
outlives 𝑟2 if it occurs earlier than 𝑟2 in Γ. It also requires that there not exist any references with
the provenance 𝑟1 which have been reborrowed (∀𝜋 : &𝑟1 𝜔 𝜏 ∈ Γ. �𝑟 ′. 𝜔 ∗𝜋 ∈ Γ(𝑟 ′)).

The last two rules say when a local provenance outlives an abstract one and vice versa. In essence,
a local provenance 𝑟 can only outlive an abstract provenance 𝜚 (OL-LocalProvAbsProv) if 𝑟 was
reborrowed. The first two premises check for reborrowing: 𝑟 ’s loan set must be non-empty (otherwise
there is no reborrow), and must consist solely of place expressions 𝑝 (since place expressions, unlike
places, contain dereferences, which identifies this as a reborrow instead of a borrow). The third
premise collects all the provenances 𝜌𝑖 that annotate any references dereferenced in each place
expression 𝑝𝑖 (see the place-expression type-computation judgment Δ; Γ ⊢𝜔 𝑝 : 𝜏, { 𝜌 } in the
appendix (§B.5)), while the last premise ensures that all of these outlive 𝜚 . The final rule, OL-
AbsProvLocalProv, says that an abstract provenance always outlives a local provenance. This
is subtle but makes sense because any abstract provenance 𝜚 is bound in a top-level function
(recall that closures don’t abstract over provenances), while a local provenance 𝑟 must be bound by
letprovs inside the function body. Ultimately, any local provenance 𝑟 ′ that gets substituted for 𝜚
upon application will already exist before 𝑟 (even for recursive calls), which means it outlives 𝑟 .

Branching and Sequencing. The next two rules illustrate how stack typings are threaded through
larger programs since the form of our typing judgment requires each rule to specify its continuation’s
stack typing. T-Branch uses the stack typing Γ1 that we get from typing the conditional 𝑒1 when
typing each of the two branches. The type 𝜏si ascribed to the overall expression must be a supertype
of the types of both branches and equal to one of them. Additionally, branching uses a union
operation ⋓ to combine the output stack typings from each branch to produce the final stack
typing Γ′ for the overall expression. This union requires that types of bound variables 𝑥 in the
two stack typings be equal (which potentially demands use of T-Drop and T-Subsumption when
typing the branches), and unions the loan sets for each provenance 𝑟 from both stack typings. Note
that we only need to union stack typings with identical domains — we type-check both branches
under Γ1 so they produce output stack typings with the same domains (since let and letprov
are the only means for introducing variables and provenances, but both are lexically scoped), and
subtyping does not change the domain of stack typings from input to output.

When typing 𝑒1; 𝑒2, we type-check 𝑒2 under the stack typing Γ1 we got from type-checking 𝑒1. But,
importantly, we apply a metafunction gc-loans(·) to Γ1 to empty out the loan sets of provenances
not used in the stack typing before typing 𝑒2 because 𝑒1 may have been a unique reference that is
thrown away at runtime before moving on to 𝑒2. Without garbage collecting loans, Oxide would
reject programs that are safe and accepted by Rust. Specifically, gc-loans(Γ) empties out the loan
set of each 𝑟 that does not appear in any types in Γ or in 𝜏 .

6We do not need transitivity for concrete provenances beyond what we can already conclude from the remaining OL rules.

1:14 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Δ; Γ ⊢ 𝜏1 ≲ 𝜏2 ⇒ Γ′

S-Refl

Δ; Γ ⊢ 𝜏1 ≲ 𝜏1 ⇒ Γ

S-Trans
Δ; Γ ⊢ 𝜏1 ≲ 𝜏2 ⇒ Γ′ Δ; Γ′ ⊢ 𝜏2 ≲ 𝜏3 ⇒ Γ′′

Δ; Γ ⊢ 𝜏1 ≲ 𝜏3 ⇒ Γ′′

S-Array
Δ; Γ ⊢ 𝜏1 ≲ 𝜏2 ⇒ Γ′

Δ; Γ ⊢ [𝜏1; 𝑛] ≲ [𝜏2; 𝑛] ⇒ Γ′

S-Slice
Δ; Γ ⊢ 𝜏1 ≲ 𝜏2 ⇒ Γ′

Δ; Γ ⊢ [𝜏1] ≲ [𝜏2] ⇒ Γ′

S-Tuple
∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ𝑛−1 ⊢ 𝜏𝑖 ≲ 𝜏′𝑖 ⇒ Γ𝑖

Δ; Γ ⊢ (𝜏1 . . . 𝜏𝑛) ≲ (𝜏′1 . . . 𝜏′𝑛) ⇒ Γ𝑛

S-Uninit
Δ; Γ ⊢ 𝜏si1 ≲ 𝜏si2 ⇒ Γ′

Δ; Γ ⊢ 𝜏si1 ≲ 𝜏si
†

2 ⇒ Γ

S-SharedRef
Δ; Γ ⊢ 𝜌1 :> 𝜌2 ⇒ Γ′

Δ; Γ′ ⊢ 𝜏1 ≲ 𝜏2 ⇒ Γ′′

Δ; Γ ⊢ &𝜌1 shrd 𝜏1 ≲ &𝜌2 shrd 𝜏2 ⇒ Γ′′

S-UniqeRef
Δ; Γ ⊢ 𝜌1 :> 𝜌2 ⇒ Γ′

Δ; Γ′ ⊢ 𝜏1 ≲ 𝜏2 ⇒ Γ′′ Δ; Γ′ ⊢ 𝜏2 ≲ 𝜏1 ⇒ Γ′′

Δ; Γ ⊢ &𝜌1 uniq 𝜏1 ≲ &𝜌2 uniq 𝜏2 ⇒ Γ′′

Δ; Γ ⊢ 𝜌1 :> 𝜌2 ⇒ Γ′

OL-Refl

Δ; Γ ⊢ 𝜌 :> 𝜌 ⇒ Γ

OL-AbstractProvenances
𝜚1 : PRV ∈ Δ 𝜚2 : PRV ∈ Δ 𝜚1 :> 𝜚2 ∈ Δ

Δ; Γ ⊢ 𝜚1 :> 𝜚2 ⇒ Γ

OL-Trans
Δ; Γ ⊢ 𝜚1 :> 𝜚2 ⇒ Γ′

Δ; Γ′ ⊢ 𝜚2 :> 𝜚3 ⇒ Γ′′

Δ; Γ ⊢ 𝜚1 :> 𝜚3 ⇒ Γ′′

OL-LocalProvenances
∀𝜋 : &𝑟1 𝜔 𝜏 ∈ Γ. �𝑟 ′. 𝜔 ∗𝜋 ∈ Γ (𝑟 ′)

𝑟1 occurs before 𝑟2 in Γ

Δ; Γ ⊢ 𝑟1 :> 𝑟2 ⇒ Γ [𝑟2 ↦→ { Γ (𝑟1) ∪ Γ (𝑟2) }]

OL-AbsProvLocalProv
𝜚 : PRV ∈ Δ 𝑟 ∈ dom(Γ)

Δ; Γ ⊢ 𝜚 :> 𝑟 ⇒ Γ

OL-LocalProvAbsProv
Γ1,0 (𝑟) = { 𝜔𝑝

𝑛 } ≠ ∅ ∀𝜋. 𝑝 ≠ 𝜋 ∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ0 ⊢shrd 𝑝𝑖 : _, 𝜌𝑖𝑚𝑖

𝜚 : PRV ∈ Δ ∀𝑖 ∈ { 1 . . . 𝑛 }.∀𝑗 ∈ { 1 . . . 𝑚𝑖 }. Δ; Γ𝑖,𝑗−1 ⊢ 𝜌𝑖,𝑗 :> 𝜚 ⇒ Γ𝑖,𝑗

Δ; Γ1,0 ⊢ 𝑟 :> 𝜚 ⇒ Γ𝑛,𝑚𝑛

Fig. 5. Subtyping and Outlives Relations in Oxide

Binding. In Oxide, T-Let is interesting in two ways. Similar to sequencing, T-Let uses the meta-
function gc-loans(·) to eliminate any loans that might be unnecessary as a result of 𝑒1 potentially
being promoted to the annotated type 𝜏si𝑎 . Additionally, in the output stack typing from 𝑒2, we see
that our binding for 𝑥 must have a dead type 𝜏sd with the whole binding being dropped in the
overall stack typing Γ2 output from T-Let (since the scope of 𝑥 ends at that point). The requirement
that the type be dead means we must have either used T-Move to move out of that binding or we
must have explicitly used T-Drop on 𝑥 in the derivation for 𝑒2.

Assignment. Assignment is interesting in a few ways. First, assignment is broken up into two
rules T-Assign and T-AssignDeref where the former is able to assign to a place 𝜋 that is dead, and
the latter is able to assign to a place through a reference (i.e. by using dereferencing). Otherwise, the
two rules are essentially the same: they type-check the expression we’re assigning, they compute
the type of the place or place expression we’re assigning to, they check that that place or place
expression is safe to use uniquely, and they check that the two types are compatible with subtyping.
Finally, we use the operation Γ ▷− 𝑝 to remove any loans prefixed by ∗𝑝 from all loan sets in Γ.

Closures and Application. Closures in Oxide correspond to move closures in Rust which move or
copy their free variables from the outer environment into the closure7. As such, T-Closure must
7Rust’s standard closures implicitly introduce borrowed temporaries for all the free variables, and so we can recover this
behavior via a simple, local transformation to move closures.

Oxide: The Essence of Rust 1:15

Referent R F 𝑥 | R .𝑛 | R [𝑛] | R[𝑛1 ..𝑛2]
Expressions 𝑒 F . . . | ⟦𝑣1 , . . . , 𝑣𝑛⟧ | dead | framed 𝑒 | shift 𝑒 | ptr R

| ⟨𝜍 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩
Values 𝑣 F 𝑐 | (𝑣1 , . . . , 𝑣𝑛) | [𝑣1 , . . . , 𝑣𝑛] | ⟦𝑣1 , . . . , 𝑣𝑛⟧ | 𝑓 | dead | ptr R

| ⟨𝜍 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩
Value Contexts V F □ | (𝑣1 , . . . , V , . . . , 𝑣𝑛) | [𝑣1 , . . . , V1 , . . . , V𝑚 , . . . , 𝑣𝑛]
Stacks 𝜎 F • | 𝜎 ♮ 𝜍

Stack Frame 𝜍 F • | 𝜍 , 𝑥 ↦→ 𝑣

Fig. 6. Oxide Syntax Extensions for Dynamics

compute the captured frame by looking at the free variables (and free provenances) of the closure’s
body, and it must mark dead (add daggers to the types of) any variables in the stack typing with
non-copyable types. The captured frame is suspended over the arrow in the function type to keep
track of the fact that the data caught up in the closure is ultimately still alive (and thus must be
considered in ownership safety). We elide the simple rule for top-level function definitions, which
gives a function named 𝑓 the type that 𝑓 is annotated with in Σ, relying on the well-formedness of
Σ to know that this is okay.

The rule for application (T-App) is essentially an ordinary function application rule in environment-
passing style, with two exceptions: (1) frame, type, and provenance variables are substituted in all
the types since functions are polymorphic, and (2) application must check that the outlives relation
(defined in Figure 5) holds for all the bounds specified in the function type.

Values and Aggregates. The typing rules for base types (T-u32, T-True, T-False, etc.) are standard,
and leave the type environment unchanged in their output. Aggregate structures like tuples check
the types of their components while threading through the environments in left-to-right order.
This left-to-right ordering for type-checking corresponds to the ordering implemented by Rust’s
type checker and borrow checker. The formalism of Oxide omits a specific treatment of structs, but
we note that they are essentially the same as tuples, only featuring a tag that must also be checked.
Our implementation which we discuss in §4.3 relies on exactly this approach to support structs.

Remaining Rules. The remaining rules in Figure 3 are straightforward or covered earlier. Elided
typing rules all concern arrays and are given in the technical appendix (§B.4) .

3.3 Operational Semantics
For our operational semantics, we extend the syntax of Oxide in Figure 6 with terms that only arise
at runtime. First, to be able to specify what “address” a pointer points to, we introduce an abstract
form of memory addresses called referents. Referents R essentially record what the offsets are from
a variable on the stack in order to specify a precise “memory address,” (e.g., a particular element
of an array or tuple, or a particular slice of an array). Next, we introduce value forms including
pointers to referents, and closures packaged with their environment 𝜍 . Additionally, we include
some administrative forms: (1) dead (the dead value), (2) framed 𝑒 which is evaluated under and
drops the top stack frame when eliminated, (3) shift 𝑒 which is similar but drops the last binding
when eliminated, and (4) ⟦𝑣1 , . . . , 𝑣𝑛⟧ which is a dynamically-sized slice of an array. Figure 6 also
includes stacks 𝜎 which are a sequence of stack frames 𝜍 , and value contexts V which allow array
values to be decomposed with multiple holes when dealing with slices.

In Figure 7, we present a selection of our small-step operational semantics which is defined using
Felleisen and Hieb [1992]-style left-to-right evaluation contexts over configurations of the form
(𝜎 ; 𝑒). Since our semantics uses referents R as an abstract version of memory addresses, some of

1:16 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

𝜎 ⊢ 𝑝 ⇓ R ↦→ 𝑣 𝜎 ⊢ 𝑝□ [𝑥] ⇓ R ↦→ 𝑣
def
= 𝜎 ⊢ 𝑝□ × 𝑥 ⇓ R ↦→ 𝑣.

𝜎 ⊢ 𝑝□ × R ⇓ R′ ↦→ 𝑣 read: “R in a context 𝑝□ computes to R′ which maps to 𝑣 in 𝜎 .”

P-Referent
𝜎 ⊢ R ⇓ _ × 𝑣

𝜎 ⊢ □ × R ⇓ R ↦→ 𝑣

P-Proj
𝜎 ⊢ 𝑝□ × R1 ⇓ R2 ↦→ (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛)

𝜎 ⊢ 𝑝□ [□.𝑖] × R1 ⇓ R2 .𝑖 ↦→ 𝑣𝑖

P-DerefPtr
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr 𝜋
𝜎 ⊢ 𝑝□ × 𝜋 ⇓ R2 ↦→ 𝑣

𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R2 ↦→ 𝑣

Σ ⊢ (𝜎 ; 𝑒) → (𝜎′; 𝑒′)

E-Move
𝜎 ⊢ 𝜋 ⇓ _ ↦→ 𝑣

Σ ⊢ (𝜎 ; 𝜋) → (𝜎 [𝜋 ↦→ dead]; 𝑣)

E-Copy
𝜎 ⊢ 𝑝 ⇓ _ ↦→ 𝑣

Σ ⊢ (𝜎 ; 𝑝) → (𝜎 ; 𝑣)

E-Borrow
𝜎 ⊢ 𝑝 ⇓ R ↦→ _

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝) → (𝜎 ; ptr R)

E-Seq

Σ ⊢ (𝜎 ; 𝑣; 𝑒) → (𝜎 ; 𝑒)

E-LetProv

Σ ⊢ (𝜎 ; letprov <𝑟> { 𝑣 }) → (𝜎 ; 𝑣)

E-Assign
𝜎 ⊢ 𝑝 ⇓ V 𝑝 = 𝑝□ [𝑥]

Σ ⊢ (𝜎 ; 𝑝 ≔ 𝑣) → (𝜎 [𝑥 ↦→ V [𝑣]]; ())

E-Let

Σ ⊢ (𝜎 ; let 𝑥 : 𝜏si𝑎 = 𝑣; 𝑒) → (𝜎 , 𝑥 ↦→ 𝑣; shift 𝑒)

E-Shift

Σ ⊢ (𝜎 , 𝑥 ↦→ 𝑣′; shift 𝑣) → (𝜎 ; 𝑣)

E-Closure
free-vars(𝑒) = 𝑥𝑓 free-nc-vars𝜎 (𝑒) = 𝑥𝑛𝑐 𝜍𝑐 = 𝜎 | 𝑥𝑓

Σ ⊢ (𝜎 ; |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 }) → (𝜎 [𝑥𝑛𝑐 ↦→ dead]; ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩)

E-AppClosure
𝑣𝑓 = ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩

Σ ⊢ (𝜎 ; 𝑣𝑓 (𝑣1 , . . . , 𝑣𝑛)) → (𝜎 ♮ 𝜍𝑐 , 𝑥1 ↦→ 𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 ; framed 𝑒)

E-Framed

Σ ⊢ (𝜎 ♮ 𝜍 ; framed 𝑣) → (𝜎 ; 𝑣)

E-While

Σ ⊢ (𝜎 ; while 𝑒1 { 𝑒2 }) → (𝜎 ; if 𝑒1 { 𝑒2; while 𝑒1 { 𝑒2 } } else { () })

Fig. 7. Selected Place-expression Evaluation Rules (top) and Reduction Rules (bottom)

our rules rely on a notion of place-expression evaluation, 𝜎 ⊢ 𝑝 ⇓ R ↦→ 𝑣 (Figure 7, top), which
should be read as: 𝑝 computes to R, which maps to 𝑣 in 𝜎 .

The evaluation rules are straightforward: E-Move returns a value by moving it off of the stack 𝜎 ,
replacing it with dead. E-Copy copies the value from the stack. E-Borrow creates a pointer value to
the referent R. Branching is completely standard, hence elided. Assignment, similar to E-Copy and
E-Borrow, uses a place-expression evaluation rule but a slightly different “get-context” version,
𝜎 ⊢ 𝑝 ⇓ V (elided), which just returns the context V surrounding the value at our desired address
as it sits on the stack bound to a variable. Then, assignment updates the stack by maintaining this
context when it updates 𝑥 (mapping it to V[𝑣]).

Binding and the Stack. Bindings are interesting in that they introduce our two administrative
forms, framed 𝑒 and shift 𝑒 . For instance, in E-Let, we step to shift 𝑒 rather than 𝑒 alone in
order to ensure that the binding for 𝑥 is well-scoped and ends when it should (seen in E-Shift). In
E-AppClosure, we similarly step to framed 𝑒 to ensure that after evaluating the body of the closure

Oxide: The Essence of Rust 1:17

we drop the stack frame from that function call (seen in E-Framed). Both E-Shift and E-Framed rely
crucially on the fact that our stack 𝜎 is ordered — they must match the most recent entry.

3.4 Well-typed Oxide programs won’t go wrong!
We prove syntactic type safety for Oxide using progress and preservation [Wright and Felleisen
1992]. The proofs of these lemmas are fairly standard — using structural induction on the typing
derivation in both cases — but rely on additional formal machinery to address the fact that evaluation
can make provenances more precise as it, for instance, follows one particular side of a branch.

Lemma 3.1 (Progress). If Σ; •; Γ ⊢ 𝑒 : 𝜏 si ⇒ Γ′ and Σ ⊢ 𝜎 : Γ , then either 𝑒 is a value, 𝑒 is

an abort! (. . .) , or ∃ 𝜎 ′, 𝑒 ′. Σ ⊢ (𝜎 ; 𝑒) → (𝜎 ′; 𝑒 ′).

The Progress lemma says that if we can type-check 𝑒 under a valid global environment Σ and stack
typing Γ and we have a stack 𝜎 that satisfies this stack typing Γ, then either 𝑒 is a value, an abort!
expression, or we can take a step. We’ve elided the Σ ⊢ 𝜎 : Γ judgment as it’s straightforward. The
proof proceeds by structural induction on the typing derivation for 𝑒 , and relies on lemmas that tell
us that we can find values for places and place expressions at runtime when our 𝜎 is well-formed.

Lemma 3.2 (Preservation). If Σ; •; Γ ⊢ 𝑒 : 𝜏 si1 ⇒ Γ𝑓 and Σ ⊢ 𝜎 : Γ and Σ ⊢ (𝜎 ; 𝑒) →
(𝜎 ′; 𝑒 ′) , then there exists Γ𝑖 such that Σ ⊢ 𝜎 ′ : Γ𝑖 and Σ; •; Γ𝑖 ⊢ 𝑒 ′ : 𝜏 si2 ⇒ Γ′

𝑓
and

•; Γ′
𝑓
⊢ 𝜏 si2 ≲ 𝜏 si1 ⇒ Γ𝑠 and there exists Γ𝑜 such that Γ𝑓 = Γ𝑠 ⋓ Γ𝑜 .

The Preservation lemma says that if 𝑒 has type 𝜏si1 under a valid global environment Σ and
stack typing Γ, have a stack 𝜎 that satisfies the stack typing Γ, and can take a step to an updated
configuration (𝜎 ′; 𝑒 ′), then there exists some intermediate stack typing Γ𝑖 that our updated stack
𝜎 ′ satisfies and under which the expression 𝑒 ′ type-checks with a potentially more-specific type 𝜏si2
and output stack typing Γ′

𝑓
.

With Lemma 3.1 and Lemma 3.2 in hand, we can prove the following type safety theorem
(Theorem 3.3) by interleaving the usage of progress and preservation. Full proofs of these and all
supporting lemmas are included in our technical appendix.

Theorem 3.3 (Type Safety). If Σ; •; • ⊢ 𝑒 : 𝜏 si ⇒ Γ and ⊢ Σ then, Σ ⊢ (•; 𝑒) →∗ (𝜎 ′; 𝑣) or
the evaluation of 𝑒 steps to an abort expression or otherwise diverges.

Notice that Type Safety, Progress, and Preservation all restrict their attention to expressions
with sized & initialized types 𝜏si. This is because expressions only ever have sized & initialized
types, while values of unsized or dead types only exist as part of the stack and other machinery.

4 (IRON) OXIDE IS RUST
To show that Oxide is a faithful formal model for the (core) Rust borrow checker, we work through
a number of example programs in Rust, and their corresponding form in Oxide. Then, in §4.3, we
describe a prototype type-checker for Oxide and how we’ve used it to test our semantics against the
official borrow checker. Finally, in §4.4, we draw connections between Oxide and Polonius, a new
streamlined implementation of Rust’s borrow checker using techniques from logic programming.

4.1 Liveness
One of the primary goals of Rust’s borrow checker is to statically ensure that there are no use-after-
free errors for references since they are a common class of bugs and even security vulnerabilities
when doing systems programming in C. To see how it works, we’ll look at a small example:

1:18 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

1 let msg = {
2 let m = ("Howdy", "Pals");
3 &m.0 // ERROR: m.0 does not live long enough
4 };
5 msg

In the block spanning lines 1–4, we declare a tuple of one element on line 2, and then create a
reference to it on line 3. Since Rust is largely an expression-based (rather than statement-based)
language, when we evalute this block, it will return the value we get from &m.0. However, after
doing so, m drops out of scope, and since it is on the stack, it is then necessarily destroyed. If this
program was allowed, we would then have a dead pointer forward on the stack, which would be
very bad. Fortunately, Rust’s borrow checker detects this, and instead reports an error — protecting
us from our mistake! Let’s look at how the same program would work in Oxide:

1 // Γ0 = •
2 letprov<'msg, 'm> {
3 // Γ1 = ’msg ↦→ {} , ’m ↦→ {}
4 let msg: &'msg shrd String = {
5 // Γ2 = Γ1
6 let m: (String, String) = ("Howdy", "Pals");
7 // Γ3 = Γ2 , m : (String, String)
8 &'m shrd m.0 // ERROR. 𝜏 = &’m shrd String
9 // Γ4 = ’msg ↦→ {} , ’m ↦→ { shrdm.0 }
10 }; // ’m is no longer valid at this point.
11 msg
12 }

To translate to Oxide, we again made the usual set of changes — annotating bindings with types,
and adding explicit letprov and shrd qualifiers. To aid comprehension, we also added comments
that describe the state of the stack typing Γ while type-checking the program. Like the Rust version,
the Oxide version statically produces an error, but to understand why we must cover a few facts.
First, recall that our rule for let binding (T-Let) removes bound variables from the environments at
the end of the binding (seen on line 9). Further, note that the type we derive for &'m shrd𝑚.0 has
provenance 'm mapped to { shrd𝑚.0 }. Then, since type well-formedness requires that the places
present in the loan sets for each provenance be bound, we are unable to prove that the type of the
expression being bound for msg is valid. That is, •; •; Γ4 ⊢ &’m shrd String does not hold.

4.2 Conditional Control Flow
It is also important for the borrow checker to be able to deal appropriately with conditional control
flow. As mentioned in §2.3, it is essential to treat conditional loans as live in order to have a sound
analysis. To see how Oxide handles conditional control flow, we will look at two examples in Rust
and Oxide— one that type-checks and one that does not. We’ll start with the former:

1 struct Point(u32, u32);
2 let mut pt: Point = Point(3, 2);
3 if cond {
4 let x = &mut pt.0;
5 *x = 4;
6 } else {
7 let p = &mut pt;
8 (*p).1 = 5;
9 }

Oxide: The Essence of Rust 1:19

In Rust, we declare a mutable binding pt to a Point value. Then, we branch on an unknown
boolean variable cond, and in one case uniquely borrow the first projection of pt before assigning
it a new value. In the other case, we uniquely borrow the whole of pt, and then mutate its second
projection through this reference. Since Rust identifies that only one of these will happen in any
program, it is okay for the two unique references to refer to overlapping parts of memory. The
program is largely the same in Oxide (though we have again included comments marking the state
of the environments during type-checking):

1 struct Point(u32, u32);
2 // Γ0 = •
3 letprov<'a, 'b> {
4 // Γ1 = ’a ↦→ {} , ’b ↦→ {}
5 let pt: Point = Point(3, 2);
6 // Γ2 = Γ1 , pt : Point
7 if cond { // Γ3 = Γ2
8 let x: &'a uniq u32 = &'a uniq pt.0;
9 // Γ4 = ’a ↦→ { uniqpt.0 } , ’b ↦→ {} , pt : Point , x : &’a uniq u32
10 *x = 4;
11 // Γ5 = Γ4
12 () // Γ6 = Γ2
13 } else { // Γ7 = Γ2
14 let p: &'b uniq Point = &'b uniq pt;
15 // Γ8 = ’a ↦→ {} , ’b ↦→ { uniqpt } , pt : Point , p : &’b uniq Point
16 (*p).1 = 5;
17 // Γ9 = Γ8
18 () // Γ10 = Γ2
19 } // Γ11 = (Γ10 ⋓ Γ6) = Γ2
20 }

As usual, mut has been replaced with the more appropriate uniq. We can now see more formally
how this example type-checks. In particular, when we get to the branch on line 7, according to
T-Branch, we check the type of each side of the branch under the same environment Γ2 (visible in
the annotations on lines 8 and 16). Since they have the same input environment, they are each able
to create their own unique reference to parts of pt (lines 9 and 17). Then, the bindings to x and p
both end at the end of their respective branch before returning unit (lines 13 and 21). This means
that when we union the output environments of each branch on line 21, we get exactly their input
environments Γ2, meaning that the loans in each branch have necessarily ended.

However, it’s also possible for loans to outlive the scope they are created in. We will explore this
kind of situation in our next example:

1 let mut m: u32 = 6;
2 let mut n: u32 = 5;
3 let x: &u32 = &n;
4 if false {
5 x = &m;
6 }
7 &mut m; // ERROR: cannot borrow m mutably while already borrowed
8 ... // additional code using x

In this example, we declare two mutable bindings m and n on lines 1 and 2. Then, on line 3,
we create a shared reference to n and bind it to x. On line 4, we branch, and assign to x a shared
reference to m instead. Then, after the branch ends, we try to mutably borrow m. Even though we

1:20 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

can see that the branch is dead code (since the condition is always false), the borrow checker will
not inspect the value and will instead give us an error saying that we cannot borrow m mutably
twice. The program is again similar in Oxide (and again annotated with environment Γ):

1 letprov<'a, 'b, 'c> {
2 // Γ0 = ’a ↦→ {} , ’b ↦→ {} , ’c ↦→ {}
3 let mut m: u32 = 6;
4 // Γ1 = Γ0 , m : u32
5 let mut n: u32 = 5;
6 // Γ2 = Γ1 , n : u32
7 let x: &'a shrd u32 = &'a shrd n;
8 // Γ3 = ’a ↦→ { shrdn } , ’b ↦→ {} , ’c ↦→ {} , m : u32 , n : u32 , x : &’a shrd u32
9 if false { // Γ4 = Γ3
10 x := &'b shrd m;
11 // Γ5 = ’a ↦→ { shrdm } , ’b ↦→ { shrdm } , ’c ↦→ {} , m : u32 , n : u32 , x : &’a shrd u32
12 () // Γ6 = Γ5
13 } else { // Γ7 = Γ3
14 () // Γ8 = Γ7
15 } // Γ9 = Γ6 ⋓ Γ8 =
16 // ’a ↦→ { shrdm , shrdn } , ’b ↦→ { shrdm } , ’c ↦→ {} , m : u32 , n : u32 , x : &’a shrd u32
17 &'c uniq m; // ERROR: cannot borrow m uniquely while already borrowed
18 ... // additional code using x
19 }

Now, using the Oxide version of the example, we can explain more formally why the program
fails to type-check. On line 7, when we borrow from n, we produce a reference of type &'ashrdu32
and add it to our stack typing as the type of x (line 7). Then, in the first half of the branch, we assign
to x a shared reference to m (line 11). According to OL-OverrideLocalProvenances (via T-Assign),
this will cause us to replace the loans associated with 'a with the loans associated with 'b (namely
{ shrdm }), but in the other side of the branch, we don’t change 'a and so it remains the same (lines
12 and 18 respectively). When we exit the branch, in T-Branch, we will combine the two stack
typings from each side, resulting in the unification of the loan sets associated with each provenance
in each side of the branch. The result (as seen on line 19) is that 'a is { shrdm , shrdn }. Thus, when
we attempt to derive ownership safety in T-Borrow for the borrow expression on line 21, we find
an overlapping shared loan against m in the loan set for 'a and yield an error.

passing disqualified
borrowck nll heap out-of-scope library enums statics & consts traits uninitialized variables misc.

89 119 63 40 50 40 93 40 81
Fig. 8. Tested Semantics Results

4.3 Tested Semantics
We set out at the onset to solve a particular problem — there is no high-level specification of the
Rust programming language and its borrowchecker. If there were, this would be the point where
we might present a proof that every expression that type checks in Oxide also type checks in
Rust and vice versa. Since doing that is not possible, we follow Guha et al. [2010] in developing
a tested semantics of Oxide typechecking. We have built an implementation of our Oxide type-
checking algorithm, OxideTC, alongside a compiler, called Reducer, from a subset of Rust (with a
small number of additional annotations) to Oxide. In addition to the features described in §3, our
implementation supports Rust’s structs by treating them as tagged tuples or records. The combined

Oxide: The Essence of Rust 1:21

Reducer-OxideTC tooling has allowed us to use tests from the official borrow checker (borrowck)
and non-lexical lifetime (nll) test suites to validate Oxide’s faithfulness as a model of Rust against
its implementation, rustc. The results of this testing is summarized in Figure 8.
For the 208 passing tests, we can compile the test case into Oxide with Reducer and then use

OxideTC to either successfully type check the program or to produce a type error. We compare this
type checking result to the expected behavior according to the rustc test suite. All 208 tests either
type check when rustc does so, or produce an error corresponding to the error produced by rustc.
The remaining 407 tests were taken out of consideration on the basis of being out-of-scope

for this work. There were 20 categories for exclusion, the majority of which had fewer than 10
applicable tests. Figure 8 includes the 6 largest categories: (1) heap allocation, (2) out-of-scope
libraries, (3) enumerations, (4) statics and constants, (5) traits, and (6) uninitialized variables. One
specialized category (multithreading) was folded into out-of-scope libraries in this table, with
the miscellaneous column aggregating the remaining smaller categories: control flow, casting,
first-class constructors, compiler internals dumping, function mutability, inline assembly, macros,
slice patterns, two-phase borrows (discussed in §6.2), uninitialized variables, universal function-call
syntax, unsafe, and variable mutability (discussed in §2.3).
Combined, heap allocation and out-of-scope libraries (of which the former is a specialization

of the latter) make up for the largest excluded category with 103 tests, and is the most immediate
avenue for future work as we will discuss in §6.1. The next largest category, traits, accounts for 93
tests. Though the trait system is in some ways novel, the bulk of its design is rooted in the work
on Haskell typeclasses and their extensions. As such, we feel that they are not an essential part
of Rust, though exploring the particularities of their design may be a fruitful avenue for future
work on typeclasses. We are working on extending our implementation with sums to support
enumerations. Many of the other categories describe features (e.g., macros, control flow, casting,
first-class constructors, statics, and constants) that are well-studied in the programming languages
literature, and in which we believe Rust has made relatively standard design choices.

The last issue to discuss involving the tested semantics is the aforementioned annotation burden.
This burden comes directly out of the syntactic differences between Oxide and Rust as seen in §3.1,
and so are fairly minor. The most immediately apparent need is to provide a provenance annotation
on borrow expressions, which we handle using Rust’s compiler annotation support. In our tests,
a borrow expression like &’a uniq x appears as #[lft="a"] &mut x. However, we reduce the
need for this by automatically generating a fresh local provenance for borrow expressions without
an annotation. This suffices for the majority of expressions without change. Relatedly, one might
also expect to see the introduction of letprov throughout. To alleviate the need for this, our
implementation automatically binds free provenances at the beginning of each function body.

The other main change we had to make relates to the use of explicit environment polymorphism
in Oxide. In Rust, every closure has a unique type without a syntax for writing it down. To work with
higher-order functions, these closures implement one of three special language-defined traits (Fn,
FnMut, and FnOnce) which can be used as bounds in higher-order functions. We compile the use of
these trait bounds to environment polymorphism in a straight-forward manner (turning instances
of the same Fn-bound polymorphic type into uses of function types with the same environment
variable), but need to introduce a way of writing down which environment to use at instantiation
time. We use a compiler annotation (#[envs(c1, ..., cn)]) on applications which says to
instantiate the environment variables with the captured environments of the types of these bindings.
If the bindings are unbound or not at a function type, we produce an error indicating as much.
Aside from these two changes, there are a handful of smaller changes that we made by hand

to keep the implementations of Reducer and OxideTC simpler, though the need for these could
be obviated with more work. Our implementation does not support method call syntax, and so

1:22 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

we translate method definitions (which take self, &self, or &mut self as their first argument)
into ordinary function definitions with a named first argument at the method receiver’s type.
Relatedly, some of the tests used traits in a trivial way to define methods polymorphic in their
receiver type. Much as with other methods, we translated these into ordinary function definitions
and used a polymorphic type for the receiver. Further, rustc allows for a number of convenient
programming patterns (like borrowing from a constant, e.g. &0) which are not supported by our
implementation. To deal with these cases, we manually introduced temporaries (a process that
rustc does automatically). As a simplification for the type checker, OxideTC only reports the first
error that occurs in the program. To ensure that we find a correspondence between all errors, we
split up test files with multiple errors into one file per test.
Finally, an earlier version of our implementation required type annotations on all let bindings,

and so currently the majority of tests include fully-annotated types. We later came to the realization
that our typing judgment is very-nearly a type synthesis judgment as in bidirectional typechecking,
and so the implementation now supports unannotated let bindings by giving the name the type
synthesized from the expression being bound. This works for all expressions except abort! which
can produce any type and thus requires an annotation. Further, if the programmer wishes to give
the binding a broader type via subtyping, they must provide it with an annotated type.

4.4 Polonius
Polonius [Matsakis 2018] is a new alias-based formulation of Rust’s borrow checker that uses
information from the Rust compiler as input facts for a logic program that checks the safety of
borrows in a program. Much as we have done with Oxide, Polonius shifts the view of lifetimes to a
model of regions as sets of loans. Similar to Oxide’s provenances, Polonius’ regions are a mechanism
for approximating the possible provenances of a given reference, and as described by Matsakis
[2018], a reference is no longer valid when any of the region’s constituent loans are invalidated. In
Oxide, we take an analogous view: a reference type is valid only when its constituent loans are
bound in the stack typing Γ. Though we have not formally explored the connection, based on the
commonality between both new views on lifetimes, we feel that Oxide corresponds to a sort of
type-systems formulation of Polonius.

5 RELATEDWORK
5.1 Semantics for Rust
Patina. Reed [2015] developed Patina, a formal semantics for an early version of Rust (pre-1.0)

focused on proving memory safety for a language with a syntactic version of borrow checking and
unique pointers. Unfortunately, the design of the language was not yet stable, and the language
overall has drifted from their model. Also, unlike Oxide, Patina made concrete decisions about
memory layout and validity which is problematic as Rust itself has not yet made such commitments.

Rusty Types. Benitez [2016] developed Metal, a formal calculus that, by their characterization,
has a Rust-like type system using an algorithmic borrow-checking formulation. Their model relies
on capabilities as in the Capability Calculus of Crary et al. [1999], but manages them indirectly
(compared to the first-class capabilities of Crary et al. [1999] or Morrisett et al. [2007]). Compared
to Rust and our work on Oxide, Metal is unable to deal with the proper LIFO ordering for object
destruction and their algorithmic formulation is less expressive than our declarative formulation.

RustBelt. In the RustBelt project, Jung et al. [2018] developed a formal semantics called 𝜆𝑅𝑢𝑠𝑡
for a continuation-passing style intermediate language in the Rust compiler known as MIR. They

Oxide: The Essence of Rust 1:23

mechanized this formal semantics in Iris [Jung et al. 2017] and used it to verify the extrinsic safety
of important Rust standard library abstractions that make extensive use of unsafe code. Their
goal was distinct from ours in that we instead wish to reason about how programs work at the
source-level, and our goals are fortunately complementary. While we argue in Sec. 6.1 that we can
treat unsafe code in the standard library as an implementation detail of the language, the work by
Jung et al. on RustBelt provides further justification by allowing us to say that what we model as
primitives can be compiled to their verified MIR implementations.

5.2 Practical Substructural Programming
As a practical programming language with substructural typing, Rust does not exist in a vacuum.
There have been numerous efforts in the programming languages community to produce languages
that rely on substructurality. Though different in their design from Rust, these languages sit in the
same broader design space, finding a balance between usability and expressivity.

Mezzo. Pottier and Protzenko [2013] developed Mezzo, an ML-family language with a static
discipline of duplicable and affine permissions to control aliasing and ownership. Similar to Rust,
Mezzo is able to have types refer directly to values, rather than always requiring indirection as in
work on ownership types [Clarke et al. 1998; Noble et al. 1998]. However, unlike Rust, Mezzo uses a
permissions system that works as a sort of type-system formulation of separation logic [Reynolds
2002]. By contrast, Rust relies on a borrow checking analysis to ensure that its guarantees about
aliasing and ownership are maintained. In Oxide, we formalized this analysis as the ownership
safety judgment which determines if it is safe to use a place uniquely or sharedly in a given context.

Alms. Tov and Pucella [2011] developed Alms as an effort to make affine types practical for
programming. Unlike Rust, Alms more closely follows the ML tradition, and relies on an interest-
ing module system to design resource-aware abstractions. Within Alms module signatures, the
programmer can annotate abstract types with kinds that denote whether or not they should be
affine. They use abstract affine types in modules to build explicit capabilities into the function
signatures within the module which enforce correct use. By contrast, in Rust, everything is affine
and unrestricted types are approximated through the use of the Copy trait.

Resource Polymorphism for OCaml. Munch-Maccagnoni [2018] has recently proposed a
backwards-compatible model of resource management for OCaml. Though not yet a part of OCaml,
the proposal is promising and aims to integrate ideas from Rust and C++ (like ownership and
so-called “resource acquisition is initialization” [Stroustrup 1994]) with a garbage-collected runtime
system for a functional language. Similar to our efforts in understanding Rust, they note the rela-
tionship that Baker’s work on Linear Lisp [Baker 1994a,b, 1995] has to modern efforts for practical
substructural programming. As Munch-Maccagnoni note themselves, there is much to be learned
from Rust in these kinds of efforts, and we hope that Oxide provides a stronger footing for doing so.

Cyclone. Grossman et al. [2002] developed Cyclone, whose goal was to be a safe C alternative.
To do so, they rely on techniques from region-based memory management [Tofte and Talpin
1994, 1997]. However unlike Rust, regions in Cyclone indicate where an object is in memory (for
example, if it is on the stack or the heap). As noted early on in §2.2, the meaning of regions in Rust
(and Oxide) is different. Provenances correspond to static approximations of a reference’s possible
origins, without requiring any realization to a particular memory model. Similar to our effort to
develop Oxide, Grossman et al. [2002] and Fluet et al. [2006] developed formal semantics to build
an understanding of the essence of Cyclone.

1:24 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Sized Types 𝜏si F . . . | Vec<𝜏>
Expressions 𝑒 F . . . | Vec::<𝜏>::new() | 𝑒1 .push(𝑒2) | 𝑒.pop() | 𝑒1 .swap(𝑒2, 𝑒3) | 𝑒.len()

Σ; Δ; Γ ⊢ 𝑒 : 𝜏 ⇒ Γ′

T-VecNew

Σ; Δ; Γ ⊢ Vec::<𝜏>::new() : Vec<𝜏> ⇒ Γ

T-VecPush
Σ; Δ; Γ ⊢ 𝑒1 : &𝜌 uniq Vec<𝜏> ⇒ Γ1 Σ; Δ; Γ1 ⊢ 𝑒2 : 𝜏 ⇒ Γ2

Σ; Δ; Γ ⊢ 𝑒1 .push(𝑒2) : unit ⇒ Γ2

T-VecPop
Σ; Δ; Γ ⊢ 𝑒 : &𝜌 uniq Vec<𝜏> ⇒ Γ′

Σ; Δ; Γ ⊢ 𝑒.pop() : 𝜏 ⇒ Γ′

T-VecLen
Σ; Δ; Γ ⊢ 𝑒 : &𝜌 shrd Vec<𝜏> ⇒ Γ′

Σ; Δ; Γ ⊢ 𝑒.len() : u32 ⇒ Γ′

T-VecSwap
Σ; Δ; Γ ⊢ 𝑒1 : &𝜌 uniq Vec<𝜏> ⇒ Γ1 Σ; Δ; Γ1 ⊢ 𝑒2 : u32 ⇒ L2Γ2 Σ; Δ; Γ2 ⊢ 𝑒3 : u32 ⇒ Γ3

Σ; Δ; Γ ⊢ 𝑒1 .swap(𝑒2, 𝑒3) : unit ⇒ Γ3

Fig. 9. Extending Oxide with Vectors

6 DISCUSSION AND FUTUREWORK
6.1 A Tower of Languages
Following the proposal byWeiss et al. [2018], we take the view that, although Rust’s standard library
contains a great deal of unsafe code, this reliance on unsafe is ultimately an implementation detail

of the language. In many other languages, key data structures like hash maps are implemented as
built-in types within the interpeter or compiler. In Rust’s case, HashMap happens to be implemented
using unsafe code, but it is no less safe than such built-ins. Bugs within this code are taken seriously
as the library is relied upon by millions of lines of code. Instead, what is essential to the soundness
of Rust overall is that the API that these standard library abstractions present are safe at the types
they are given. To that end, we wish to build on Oxide with extensions for individual abstractions
that ultimately increase the expressive power [Felleisen 1991] of the language.

Following Matsakis [2016b] and Weiss et al. [2018], we consider the most important of these ab-
stractions to be Vec, the type of dynamically-sized vectors (which adds support for heap allocation),
Rc, the type of reference-counted pointers (which adds support for runtime-checked sharing), and
RefCell, the type of mutable reference cells (which adds support for runtime-guarded mutation).
Though these extensions are beyond the scope of this paper, we show a sketch of an extension for
heap allocation in Figure 9, which adds support for Vec to Oxide. We leave the full extensions and
their metatheory to future work.
The extension comes in a few parts. First, we extend the grammar of types to include a poly-

morphic vector type Vec<𝜏>. Then, we extend the grammar of expressions with some of the key
operations on vectors. Vec::<𝜏>::new() is used to create a new empty vector with the element
type 𝜏 . Then, 𝑒1.push(𝑒2) and 𝑒.pop() are used to add and remove elements from the vector, while
𝑒1.swap(𝑒2, 𝑒3) is used to swap the values in the vector at indices 𝑒2 and 𝑒3. Finally, of course, 𝑒.len()
yields the current number of elements stored within the vector. Notably, the typing rules in our
sketch directly follow the types as defined in Rust’s Vec API, suggesting that they are essentially
special cases of Oxide’s rule for function application (T-App).

6.2 Two-Phase Borrows
In working on non-lexical lifetimes, Matsakis [2017] introduced a proposal for two-phase mutable
borrows in Rust. The goal of these two-phase borrows is to resolve a long-standing usability issue,

Oxide: The Essence of Rust 1:25

referred to as the “nested method call” problem, where Rust’s borrow checker might force the
programmer to introduce temporaries to prove that code like vec.push(vec.len()) is safe. To
understand where the problem comes from, we will have to look at how method calls expand in
Rust. For example, vec.push(vec.len()) desugars to the code on the left below:

1 let tmp0 = &mut vec;
2 let tmp1 = &vec;
3 let tmp2 = Vec::len(tmp1);
4 Vec::push(tmp0, tmp2);

1 let tmp1 = &vec;
2 let tmp2 = Vec::len(tmp1);
3 let tmp0 = &mut vec;
4 Vec::push(tmp0, tmp2);

Without two-phase borrows, the example on the left behaves like one of our early examples in
§2.2. That is, we cannot create an immutable reference on line 2 because the mutable loan from line
1 is still live. Further, non-lexical lifetimes are no help — the loan on line 1 needs to be live until
line 4. However, intuitively, we know that this code is safe since the mutable loan is not actually
needed until line 4. We could resolve the problem here by desugaring to the code on the right.

Unfortunately, this desugaring in general is subtle. Still, the idea of reordering suggests a weaken-
ing of the type system to make the two expansions equivalent to the borrowchecker. This weakening
is precisely two-phase borrows. When a mutable borrow occurs for a method receiver, the loan is
marked reserved. Reserved loans then act as if they are shared until the method is applied.
While Oxide does not currently support two-phase borrows, we could imagine extending our

grammar for ownership quantifiers 𝜔 with a new form reserved, which behaves precisely like a
shrd-loan until the program requires uniqueness at which point it is raised to a uniq-loan. However,
this would likely require some additional machinery in order for the ownership safety judgment to
make these transitions at the use site of values with reserved loans, complicating our type system.

6.3 A Rusty Future
Oxide gives a formal framework for reasoning about the behavior of source-level Rust programs.
This reasoning opens up a number of promising avenues for future work on Rust using Oxide.

Mechanized Metatheory for Oxide. Though we have paper proofs in our technical appendix (§3.4)
for all the theorems presented here, we have begun an effort to mechanize the semantics in Coq.
This has a number of advantages. First, as with most efforts for mechanized metatheory, we can
establish even more confidence in our current results. Further, we can expand the mechanization
to incorporate other important theorems. Finally, other researchers can use the mechanization as a
starting point for their work and know that their changes have not violated type safety.

Formal Verification. One of the unfortunate gaps in Rust programming today is the lack of
effective tools for proving properties (such as functional correctness) of Rust programs. There are
some early efforts already to try to improve this situation [Astrauskas et al. 2018; Baranowski et al.
2018; Toman et al. 2015; Ullrich 2016], but without a semantics the possibilities are limited. For
example, the work by Astrauskas et al. [2018] builds verification support for Rust into Viper [Müller
et al. 2016], but uses an ad-hoc subset without support for shared references. We believe that our
work on Oxide can help extend such work and will enable further verification techniques like those
seen in 𝐹★ [Swamy et al. 2016] and Liquid Haskell [Vazou et al. 2014].

Verified Compilation. Rust’s memory safety guarantees lend themselves well to security-critical
applications. However, the existing compiler toolchain (leveraging LLVM [Lattner and Adve 2004])
does not lend itself well to preserving these kinds of guarantees. As such, another avenue for
future work using Oxide would be to build an alternative verified compiler toolchain, perhaps by
compilation to Vellvm [Zhao et al. 2012] or CompCert’s Clight [Blazy and Leroy 2009].

1:26 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Security. We also view Oxide as an enabler for future work on extending techniques from the
literature on language-based security to Rust. In particular, one could imagine building support for
dynamic or static information-flow control atop Oxide as a formalization (for which we can actually
prove theorems about these extensions) alongside a practical implementation for the official Rust
compiler. Further, we would like to prove parametricity for Oxide to develop support for relaxed
noninterference through type abstraction as done in recent work by Cruz et al. [2017].

7 CONCLUSION
We have presented Oxide, a formal model of the essence of Rust. Oxide features a novel presentation
of ownership and borrowing from the perspective of Rust, and reformulates Rust’s algorithmic
borrow-checker as a declarative substructural type system. We proved type safety for Oxide using
syntactic techniques (§3.4). We implemented the Oxide type checker in OCaml along with a compiler
from Rust to Oxide, and validated our semantics against a suite of over two-hundred tests from the
official rustc test suite. As alluded to in Sections 1 and 6, we hope Oxide will serve as a basis for
further research using Rust, and more broadly on safe and correct systems programming.

REFERENCES
Amal Ahmed. 2004. Semantics of Types for Mutable State. Ph.D. Dissertation. Princeton University.
Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and Daniel C. Wang. 2010. Semantic

Foundations for Typed Assembly Languages. ACM Transactions on Programming Languages and Systems 32, 3 (March
2010), 1–67.

Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. 2018. Leveraging Rust Types for Modular

Specification and Verification. Technical Report. Eidgenössische Technische Hochschule Zürich.
Henry G. Baker. 1992. Lively Linear Lisp — ’Look Ma, No Garbage!’. SIGPLAN Notices (1992).
Henry G. Baker. 1994a. Linear Logic and Permutation Stacks—The Forth Shall Be First. SIGARCH Computer Architecture

News (1994).
Henry G. Baker. 1994b. Minimizing Reference Count Updating with Deferred Anchored Pointers for Functional Data

Structures. SIGPLAN Notices (1994).
Henry G. Baker. 1995. ’Use-Once’ Variables and Linear Objects — Storage Management, Reflection, and Multi-Threading.

SIGPLAN Notices (1995).
Marek Baranowski, Shaobo He, and Zvonimir Rakamarić. 2018. Verifying Rust Programs with SMACK. In Automated

Technology for Verification and Analysis.
Sergio Benitez. 2016. Short Paper: Rusty Types for Solid Safety. InWorkshop on Programming Languages and Analysis for

Security.
Sandrine Blazy and Xavier Leroy. 2009. Mechanized semantics for the Clight subset of the C language. Journal of Automated

Reasoning 43, 3 (2009).
David G. Clarke, John M. Potter, and James Noble. 1998. Ownership Types for Flexible Alias Protection. In ACM Symposium

on Object Oriented Programming: Systems, Languages, and Applications (OOPSLA).
Karl Crary, David Walker, and Greg Morrisett. 1999. Typed Memory Management in a Calculus of Capabilities. In ACM

Symposium on Principles of Programming Languages (POPL), San Antonio, Texas.
Raimil Cruz, Tamara Rezk, Bernard Serpette, and Éric Tanter. 2017. Type Abstraction for Relaxed Noninterference. In

European Conference on Object-Oriented Programming (ECOOP).
Matthias Felleisen. 1991. On the expressive power of programming languages. Science of Computer Programming (1991).
Matthias Felleisen and Robert Hieb. 1992. The Revised Report on the Syntactic Theories of Sequential Control and State.

Theoretical Computer Science (1992).
Matthew Fluet, Greg Morrisett, and Amal Ahmed. 2006. Linear Regions Are All You Need. In European Symposium on

Programming (ESOP).
Jean-Yves Girard. 1987. Linear Logic. Theoretical Computer Science (1987).
Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney. 2002. Region-Based Memory

Management in Cyclone. In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),

Berlin, Germany.
Unsafe Code GuidelinesWorking Group. 2019. Unsafe Code Guidelines. https://github.com/rust-rfcs/unsafe-code-guidelines.

Accessed: 2019-02-22.

https://github.com/rust-rfcs/unsafe-code-guidelines

Oxide: The Essence of Rust 1:27

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The Essence of JavaScript. In European Conference on

Object-Oriented Programming (ECOOP).
Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: A Minimal Core Calculus for Java and

GJ. ACM Transactions on Programming Languages and Systems (2001).
Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. 2019. Stacked Borrows: An Aliasing Model for Rust. Proc.

ACM Program. Lang. 4, POPL, Article 41 (Dec. 2019), 32 pages. https://doi.org/10.1145/3371109
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018. RustBelt: Securing the Foundations of the Rust

Programming Language. In ACM Symposium on Principles of Programming Languages (POPL), Los Angeles, California.
Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2017. Iris from the Ground

Up: A Modular Foundation for Higher-Order Concurrent Separation Logic. In Journal of Functional Programming.
Yves Lafont. 1988. The Linear Abstract Machine. Theoretical Computer Science (1988).
Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.

In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-directed and Runtime

Optimization (Palo Alto, California) (CGO ’04). IEEE Computer Society, Washington, DC, USA. http://dl.acm.org/citation.
cfm?id=977395.977673

Nicholas D. Matsakis. 2016a. Non-lexical lifetimes: introduction. http://smallcultfollowing.com/babysteps/blog/2016/04/27/
non-lexical-lifetimes-introduction/. Accessed: 2019-02-28.

Nicholas D. Matsakis. 2016b. Observational equivalence and unsafe code. http://smallcultfollowing.com/babysteps/blog/
2016/10/02/observational-equivalence-and-unsafe-code/. Accessed: 2019-02-20.

Nicholas D. Matsakis. 2017. Nested method calls via two-phase borrowing. http://smallcultfollowing.com/babysteps/blog/
2017/03/01/nested-method-calls-via-two-phase-borrowing/. Accessed: 2019-02-18.

Nicholas D. Matsakis. 2018. An alias-based formulation of the borrow checker. http://smallcultfollowing.com/babysteps/
blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/.

Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. System Sci. (1978).
Naftaly Minsky. 1996. Towards Alias-Free Pointers. In European Conference on Object-Oriented Programming (ECOOP).
Greg Morrisett, Amal Ahmed, and Matthew Fluet. 2007. L3: A Linear Language with Locations. Fundamenta Informaticae

(2007).
Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-Based

Reasoning. In Verification, Model Checking, and Abstract Interpretation (VMCAI).
Guillaume Munch-Maccagnoni. 2018. Resource Polymorphism. CoRR abs/1803.02796 (2018). arXiv:1803.02796 http:

//arxiv.org/abs/1803.02796
James Noble, Jan Vitek, and John Potter. 1998. Flexible Alias Protection. In European Conference on Object-Oriented

Programming (ECOOP).
François Pottier and Jonathan Protzenko. 2013. Programming with Permissions in Mezzo. In International Conference on

Functional Programming (ICFP), Boston, Massachusetts.
Eric Reed. 2015. Patina: A formalization of the Rust programming language. Master’s thesis. University of Washington.
John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In IEEE Symposium on Logic in

Computer Science (LICS), Copenhagen, Denmark.
Bjarne Stroustrup. 1994. The Design and Evolution of C++. Addison-Wesley.
Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-

van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin.
2016. Dependent Types and Multi-monadic Effects in F*. In ACM Symposium on Principles of Programming Languages

(POPL), St. Petersburg, Florida.
Mads Tofte and Jean-Pierre Talpin. 1994. Implementation of the Typed Call-by-Value 𝜆-calculus using a Stack of Regions. In

ACM Symposium on Principles of Programming Languages (POPL), Portland, Oregon.
Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory Management. Information and Computation (1997).
John Toman, Stuart Pernsteiner, and Emina Torlak. 2015. CRust: A Bounded Verifier for Rust. In IEEE/ACM International

Conference on Automated Software Engineering.
Jesse A. Tov and Riccardo Pucella. 2011. Practical Affine Types. In ACM Symposium on Principles of Programming Languages

(POPL), Austin, Texas.
Aaron Turon, Konrad Borowski, Hidehito Yabuuchi, and Dan Aloni. 2017. Non-Lexical Lifetimes. https://github.com/rust-

lang/rfcs/blob/master/text/2094-nll.md. Accessed: 2019-02-28.
Sebastian Ullrich. 2016. Simple Verification of Rust Programs via Functional Purification. Master’s thesis. Karlsruhe Institute

of Technology.
Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement Types for Haskell.

In International Conference on Functional Programming (ICFP) (Gothenburg, Sweden) (ICFP ’14). ACM, New York, NY,
USA, 269–282. https://doi.org/10.1145/2628136.2628161

https://doi.org/10.1145/3371109
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
http://smallcultfollowing.com/babysteps/blog/2016/04/27/non-lexical-lifetimes-introduction/
http://smallcultfollowing.com/babysteps/blog/2016/04/27/non-lexical-lifetimes-introduction/
http://smallcultfollowing.com/babysteps/blog/2016/10/02/observational-equivalence-and-unsafe-code/
http://smallcultfollowing.com/babysteps/blog/2016/10/02/observational-equivalence-and-unsafe-code/
http://smallcultfollowing.com/babysteps/blog/2017/03/01/nested-method-calls-via-two-phase-borrowing/
http://smallcultfollowing.com/babysteps/blog/2017/03/01/nested-method-calls-via-two-phase-borrowing/
http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
https://arxiv.org/abs/1803.02796
http://arxiv.org/abs/1803.02796
http://arxiv.org/abs/1803.02796
https://github.com/rust-lang/rfcs/blob/master/text/2094-nll.md
https://github.com/rust-lang/rfcs/blob/master/text/2094-nll.md
https://doi.org/10.1145/2628136.2628161

1:28 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Philip Wadler. 1991. Is there a use for linear logic?. In ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based

Program Manipulation (PEPM).
David Wakeling and Colin Runciman. 1991. Linearity and Laziness. In ACM Symposium on Functional Programming

Languages and Computer Architecture (FPCA).
Aaron Weiss, Daniel Patterson, and Amal Ahmed. 2018. Rust Distilled: An Expressive Tower of Languages. ML Family

Workshop (2018).
Andrew K. Wright and Matthias Felleisen. 1992. A Syntactic Approach to Type Soundness. Information and Computation

(1992).
Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2012. Formalizing the LLVM Intermediate

Representation for Verified Program Transformations. In ACM Symposium on Principles of Programming Languages

(POPL), Philadelphia, Pennsylvania.

Oxide: The Essence of Rust 1:29

A OXIDE SYNTAX

Variables 𝑥 Functions 𝑓 Type Vars. 𝛼 Frame Vars. 𝜑

Concrete Prov. 𝑟 Abstract Prov. 𝜚 Strings str Naturals 𝑚,𝑛, 𝑘

Path 𝑞 F 𝜖 | 𝑛.𝑞
Places 𝜋 F 𝑥 .𝑞

Place Expressions 𝑝 F 𝑥 | ∗ 𝑝 | 𝑝.𝑛
Place Expression Contexts 𝑝□ F □ | ∗ 𝑝□ | 𝑝□ .𝑛

Provenances 𝜌 F 𝜚 | 𝑟
Ownership Qualifiers 𝜔 F shrd | uniq
Loans ℓ F 𝜔𝑝

Kinds 𝜅 F ★ | PRV | FRM
Base Types 𝜏b F bool | u32 | unit
Sized Types 𝜏si F 𝜏b | 𝛼 | &𝜌 𝜔 𝜏xi | [𝜏si; 𝑛] | (𝜏si1 , . . . , 𝜏si𝑛)

| ∀<𝜑 , 𝜚 , 𝛼>(𝜏si1 , . . . , 𝜏si𝑛) Φ→ 𝜏si𝑟 where 𝜚1 : 𝜚2
Maybe Unsized Types 𝜏xi F 𝜏si | [𝜏si]
Dead Types 𝜏sd F 𝜏si

† | (𝜏sd1 , . . . , 𝜏sd𝑛)
Maybe Dead Types 𝜏sx F 𝜏si | 𝜏sd | (𝜏sx1 , . . . , 𝜏sx𝑛)
Types 𝜏 F 𝜏xi | 𝜏sx

Constants 𝑐 F () | 𝑛 | true | false
Expressions 𝑒 F 𝑐 | 𝑝 | &𝑟 𝜔 𝑝 | &𝑟 𝜔 𝑝 [𝑒] | &𝑟 𝜔 𝑝 [𝑒1 ..𝑒2] | 𝑝 ≔ 𝑒

| letprov <𝑟> { 𝑒 } | let 𝑥 : 𝜏si = 𝑒1; 𝑒2 | 𝑒1; 𝑒2
| |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } | 𝑒𝑓 ::<Φ , 𝜌 , 𝜏si>(𝑒1 , . . . , 𝑒𝑛)
| if 𝑒1 { 𝑒2 } else { 𝑒3 } | [𝑒1 , . . . , 𝑒𝑛] | (𝑒1 , . . . , 𝑒𝑛)
| 𝑝 [𝑒] | for 𝑥 in 𝑒1 { 𝑒2 } | while 𝑒1 { 𝑒2 } | abort!(str)

Sequenceless Expressions 𝑒 F 𝑐 | 𝑝 | &𝑟 𝜔 𝑝 | &𝑟 𝜔 𝑝 [𝑒] | &𝑟 𝜔 𝑝 [𝑒1 ..𝑒2] | 𝑝 ≔ 𝑒

| letprov <𝑟> { 𝑒 } |
| |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } | 𝑒𝑓 ::<Φ , 𝜌 , 𝜏si>(𝑒1 , . . . , 𝑒𝑛)
| if 𝑒1 { 𝑒2 } else { 𝑒3 } | [𝑒1 , . . . , 𝑒𝑛] | (𝑒1 , . . . , 𝑒𝑛)
| 𝑝 [𝑒] | for 𝑥 in 𝑒1 { 𝑒2 } | while 𝑒1 { 𝑒2 } | abort!(str)

Frame Expressions Φ F 𝜑 | F

Global Environment Σ F • | Σ , 𝜀
Global Entries 𝜀 F fn 𝑓 <𝜑 , 𝜚 , 𝛼>(𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛) → 𝜏si𝑟 where 𝜚1 : 𝜚2 { 𝑒 }

Type Environment Δ F • | Δ , 𝛼 : ★ | Δ , 𝜚 : PRV | Δ , 𝜑 : FRM | Δ , 𝜚 :> 𝜚 ′

Frame Typing F F • | F , 𝑥 : 𝜏sx | F , 𝑟 ↦→ { ℓ }
Stack Typing Γ F • | Γ ♮ F

1:30 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

B STATICS
B.1 Well-Formedness Judgments

⊢ Σ

read: “Σ is well-formed”

WF-GlobalEnv
∀𝜀 ∈ Σ. Σ ⊢ 𝜀

⊢ Σ

Σ ⊢ 𝜀
read: “𝜀 is a well-formed function definition in Σ”

WF-FunctionDefinition
Δ = 𝜑 : FRM , 𝜚 : PRV , 𝜚1 :> 𝜚2 , 𝛼 :★ { 𝜚1 } ⊆ { 𝜚 } { 𝜚2 } ⊆ { 𝜚 }
Σ; Δ; • ♮ 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ⊢ 𝑒 : 𝜏si

𝑓
⇒ Γ′ Δ; • ⊢ 𝜏si

𝑓
≲ 𝜏si𝑟 ⇒ •

Σ ⊢ fn 𝑓 <𝜑 , 𝜚 , 𝛼> (𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛) → 𝜏si𝑟 where 𝜚1 : 𝜚2 { 𝑒 }

⊢ Δ

read: “Δ is well-formed”

WF-TVarEmpty

⊢ •

WF-TVarExtendEnv

⊢ Δ , 𝜑 : FRM

WF-TVarExtendProv

⊢ Δ , 𝜚 : PRV

WF-TVarExtendType

⊢ Δ , 𝛼 :★

WF-TvarExtendOutlives
𝜚1 : PRV ∈ Δ 𝜚2 : PRV ∈ Δ

⊢ Δ , 𝜚1 :> 𝜚2

Σ; Δ ⊢ Γ

read: “Γ is well-formed under Σ and Δ”

WF-EmptyStackTyping

Σ; Δ ⊢ •

WF-StackTyping
Σ; Δ ⊢ Γ places(F) ⊆ dom(Γ ♮ F)

dom(F) # dom(Γ) ∀𝑥 : 𝜏 ∈ F. Σ; Δ; Γ ♮ F ⊢ 𝜏
∀𝑟 ↦→ { ℓ } ∈ F. ∀𝜔𝑝 ∈ { ℓ }. ∃𝜏xi . Δ; Γ ♮ F ⊢𝜔 𝑝 : 𝜏xi

Σ; Δ ⊢ Γ ♮ F

⊢ Σ; Δ; Γ
read: “Σ, Δ, and Γ are well-formed.”

WF-Environments
⊢ Σ ⊢ Δ Σ; Δ ⊢ Γ

⊢ Σ; Δ; Γ

Oxide: The Essence of Rust 1:31

Σ; Δ; Γ ⊢ Φ
read: “Φ is a well-formed captured environment”

WF-EnvVar
Δ(𝜑) = FRM

Σ; Δ; Γ ⊢ 𝜑

WF-Env
Σ; Δ ⊢ Γ ♮ F𝑐
Σ; Δ; Γ ⊢ F𝑐

Δ; Γ ⊢ 𝜌

read: “𝜌 is a well-formed provenance”

WF-LocalProv
𝑟 ∈ dom(Γ)
Δ; Γ ⊢ 𝑟

WF-AbstractProv
Δ(𝜚) = PRV

Δ; Γ ⊢ 𝜚

Σ; Δ; Γ ⊢ 𝜏
read: “𝜏 is a well-formed type under Σ, Δ, and Γ”

WF-BaseType

Σ; Δ; Γ ⊢ 𝜏b

WF-TVar
Δ(𝛼) = ★

Σ; Δ; Γ ⊢ 𝛼

WF-Ref
(Γ (𝑟) = ∅ ∨ ∃𝜔𝑝 ∈ Γ (𝑟) . ∃𝜏xi𝑝 . Δ; Γ ⊢𝜔 𝑝 : 𝜏xi𝑝 . 𝜏xi occurs in 𝜏xi𝑝)

Σ; Δ; Γ ⊢ 𝜏xi

Σ; Δ; Γ ⊢ &𝑟 𝜔 𝜏xi

WF-AbstractRef
Δ(𝜚) = PRV Σ; Δ; Γ ⊢ 𝜏

Σ; Δ; Γ ⊢ &𝜚 𝜔 𝜏

WF-Tuple
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ ⊢ 𝜏sx𝑖

Σ; Δ; Γ ⊢ (𝜏sx1 , . . . , 𝜏sx𝑛)

WF-Function
Σ; Δ; Γ ⊢ Φ Σ; Δ , 𝜑 : FRM , 𝜚 : PRV , 𝜚1 :> 𝜚2 , 𝛼 :★; Γ ⊢ 𝜏si𝑟
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ , 𝜑 : FRM , 𝜚 : PRV , 𝜚1 :> 𝜚2 , 𝛼 :★; Γ ⊢ 𝜏si𝑖

Σ; Δ; Γ ⊢ ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛) Φ→ 𝜏si𝑟 where 𝜚1 : 𝜚2

WF-Uninit

Σ; Δ; Γ ⊢ 𝜏si†

WF-Array
Σ; Δ; Γ ⊢ 𝜏si

Σ; Δ; Γ ⊢ [𝜏si; 𝑛]

WF-Slice
Σ; Δ; Γ ⊢ 𝜏si

Σ; Δ; Γ ⊢ [𝜏si]

1:32 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

B.2 Subtyping & Provenance Subtyping

Δ; Γ ⊢ 𝜏1 ≲ 𝜏2 ⇒ Γ′

read: “𝜏1 is a subtype of 𝜏2 under Δ and Γ, producing Γ′”

S-Refl

Δ; Γ ⊢ 𝜏1 ≲ 𝜏1 ⇒ Γ

S-Trans
Δ; Γ ⊢ 𝜏1 ≲ 𝜏2 ⇒ Γ′ Δ; Γ′ ⊢ 𝜏2 ≲ 𝜏3 ⇒ Γ′′

Δ; Γ ⊢ 𝜏1 ≲ 𝜏3 ⇒ Γ′′

S-Array
Δ; Γ ⊢ 𝜏1 ≲ 𝜏2 ⇒ Γ′

Δ; Γ ⊢ [𝜏1; 𝑛] ≲ [𝜏2; 𝑛] ⇒ Γ′

S-Slice
Δ; Γ ⊢ 𝜏1 ≲ 𝜏2 ⇒ Γ′

Δ; Γ ⊢ [𝜏1] ≲ [𝜏2] ⇒ Γ′

S-SharedRef
Δ; Γ ⊢ 𝜌1 :> 𝜌2 ⇒ Γ′

Δ; Γ′ ⊢ 𝜏1 ≲ 𝜏2 ⇒ Γ′′

Δ; Γ ⊢ &𝜌1 shrd 𝜏1 ≲ &𝜌2 shrd 𝜏2 ⇒ Γ′′

S-UniqeRef
Δ; Γ ⊢ 𝜌1 :> 𝜌2 ⇒ Γ′

Δ; Γ′ ⊢ 𝜏1 ≲ 𝜏2 ⇒ Γ′′ Δ; Γ′ ⊢ 𝜏2 ≲ 𝜏1 ⇒ Γ′′

Δ; Γ ⊢ &𝜌1 uniq 𝜏1 ≲ &𝜌2 uniq 𝜏2 ⇒ Γ′′

S-Tuple
∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ𝑛−1 ⊢ 𝜏𝑖 ≲ 𝜏′𝑖 ⇒ Γ𝑖

Δ; Γ ⊢ (𝜏1 . . . 𝜏𝑛) ≲ (𝜏′1 . . . 𝜏′𝑛) ⇒ Γ𝑛

S-Uninit
Δ; Γ ⊢ 𝜏si1 ≲ 𝜏si2 ⇒ Γ′

Δ; Γ ⊢ 𝜏si1 ≲ 𝜏si
†

2 ⇒ Γ

Δ; Γ ⊢ 𝜌1 :> 𝜌2 ⇒ Γ′

read: “𝜌1 outlives 𝜌2 under Δ and Γ, producing Γ′”

OL-Refl

Δ; Γ ⊢ 𝜌 :> 𝜌 ⇒ Γ

OL-AbstractProvenances
𝜚1 : PRV ∈ Δ 𝜚2 : PRV ∈ Δ 𝜚1 :> 𝜚2 ∈ Δ

Δ; Γ ⊢ 𝜚1 :> 𝜚2 ⇒ Γ

OL-Trans
Δ; Γ ⊢ 𝜚1 :> 𝜚2 ⇒ Γ′

Δ; Γ′ ⊢ 𝜚2 :> 𝜚3 ⇒ Γ′′

Δ; Γ ⊢ 𝜚1 :> 𝜚3 ⇒ Γ′′

OL-LocalProvenances
∀𝜋 : &𝑟1 𝜔 𝜏 ∈ Γ. �𝑟 ′. 𝜔 ∗𝜋 ∈ Γ (𝑟 ′)

𝑟1 occurs before 𝑟2 in Γ

Δ; Γ ⊢ 𝑟1 :> 𝑟2 ⇒ Γ [𝑟2 ↦→ { Γ (𝑟1) ∪ Γ (𝑟2) }]

OL-LocalProvAbsProv
Γ1,0 (𝑟) = { 𝜔𝑝

𝑛 } ≠ ∅ ∀𝜋. 𝑝 ≠ 𝜋 ∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ0 ⊢shrd 𝑝𝑖 : _, 𝜌𝑖𝑚𝑖

𝜚 : PRV ∈ Δ ∀𝑖 ∈ { 1 . . . 𝑛 }.∀𝑗 ∈ { 1 . . . 𝑚𝑖 }. Δ; Γ𝑖,𝑗−1 ⊢ 𝜌𝑖,𝑗 :> 𝜚 ⇒ Γ𝑖,𝑗

Δ; Γ1,0 ⊢ 𝑟 :> 𝜚 ⇒ Γ𝑛,𝑚𝑛

OL-AbsProvLocalProv
𝜚 : PRV ∈ Δ 𝑟 ∈ dom(Γ)

Δ; Γ ⊢ 𝜚 :> 𝑟 ⇒ Γ

Δ; Γ ⊢ 𝜌1 :> 𝜌2 ⇒ Γ′

OL-Bounds
∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ𝑖−1 ⊢ 𝜌𝑖 :> 𝜌′𝑖 ⇒ Γ𝑖

Δ; Γ0 ⊢ 𝜌 :> 𝜌′ ⇒ Γ𝑛

Oxide: The Essence of Rust 1:33

B.3 Ownership Safety

Δ; Γ ⊢𝜋𝜔 𝑝 ⇒ { 𝜔𝑝 } where Δ; Γ ⊢𝜔 𝑝 ⇒ { 𝜔𝑝 } means Δ; Γ ⊢•𝜔 𝑝 ⇒ { 𝜔𝑝 }.
read: “𝑝 is 𝜔-safe under Δ and Γ, with reborrow exclusion list 𝜋 , and may point to any of the loans in 𝜔𝑝 ”

O-SafePlace
∀𝑟 ′ ↦→ { ℓ } ∈ Γ. (∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝜋 ′ #𝜋)
∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ. 𝜋 ′ ∈ { 𝜋𝑒 }))

Δ; Γ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }

O-Deref
Γ (𝜋) = &𝑟 𝜔𝜋 𝜏𝜋 Γ (𝑟) = { 𝜔′

𝑝𝑖 } 𝑝𝑖 = 𝑝□
𝑖
[𝜋𝑖] 𝜔 ≲ 𝜔𝜋

∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ ⊢𝜋𝑒 , 𝜋𝑖 , 𝜋
𝜔 𝑝□ [𝑝𝑖] ⇒ { 𝜔𝑝′

𝑖
}

∀𝑟 ′ ↦→ { ℓ } ∈ Γ. (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ. 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋𝑖 , 𝜋 }))

Δ; Γ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋] ⇒ { 𝜔𝑝′1 , . . . 𝜔𝑝′𝑛 , 𝜔𝑝□ [∗𝜋] }

O-DerefAbs
Γ (𝜋) = &𝜚 𝜔𝜋 𝜏𝜋 Δ; Γ ⊢𝜔 𝑝□ [∗𝜋] : 𝜏 𝜔 ≲ 𝜔𝜋

∀𝑟 ′ ↦→ { ℓ } ∈ Γ. (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ. 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋 }))

Δ; Γ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋] ⇒ { 𝜔𝑝□ [∗𝜋] }

B.4 Typing

Σ; Δ; Γ ⊢ 𝑒 : 𝜏 ⇒ Γ′ where ⊢ Σ; Δ; Γ and Σ; Δ; Γ′ ⊢ 𝜏
read: “𝑒 has type 𝜏 under Σ, Δ, and Γ, producing output context Γ”

T-Move
Δ; Γ ⊢uniq 𝜋 ⇒ { uniq𝜋 }

Γ (𝜋) = 𝜏si noncopyableΣ 𝜏
si

Σ; Δ; Γ ⊢ 𝜋 : 𝜏si ⇒ Γ [𝜋 ↦→ 𝜏si
†]

T-Copy
Δ; Γ ⊢shrd 𝑝 ⇒ { ℓ }

Δ; Γ ⊢shrd 𝑝 : 𝜏si copyableΣ 𝜏
si

Σ; Δ; Γ ⊢ 𝑝 : 𝜏si ⇒ Γ

T-Borrow
Γ (𝑟) = ∅ Δ; Γ ⊢𝜔 𝑝 ⇒ { ℓ }

Δ; Γ ⊢𝜔 𝑝 : 𝜏xi

Σ; Δ; Γ ⊢ &𝑟 𝜔 𝑝 : &𝑟 𝜔 𝜏xi ⇒ Γ [𝑟 ↦→ { ℓ }]

T-BorrowIndex
Σ; Δ; Γ ⊢ 𝑒 : u32 ⇒ Γ′ Γ′ (𝑟) = ∅
Δ; Γ′ ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi

𝜏xi = [𝜏si; 𝑛] ∨ 𝜏xi = [𝜏si]

Σ; Δ; Γ ⊢ &𝑟 𝜔 𝑝 [𝑒] : &𝑟 𝜔 𝜏si ⇒ Γ′ [𝑟 ↦→ { ℓ }]

T-BorrowSlice
Σ; Δ; Γ ⊢ 𝑒1 : u32 ⇒ Γ1 Σ; Δ; Γ1 ⊢ 𝑒2 : u32 ⇒ Γ2 Γ2 (𝑟) = ∅

Δ; Γ2 ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ2 ⊢𝜔 𝑝 : [𝜏si]

Σ; Δ; Γ ⊢ &𝑟 𝜔 𝑝 [𝑒1 ..𝑒2] : &𝑟 𝜔 [𝜏si] ⇒ Γ2 [𝑟 ↦→ { ℓ }]

T-IndexCopy
Σ; Δ; Γ ⊢ 𝑒 : u32 ⇒ Γ′ Δ; Γ′ ⊢shrd 𝑝 ⇒ { ℓ }

copyableΣ 𝜏
si Δ; Γ′ ⊢shrd 𝑝 : 𝜏xi 𝜏xi = [𝜏si; 𝑛] ∨ 𝜏xi = [𝜏si]

Σ; Δ; Γ ⊢ 𝑝 [𝑒] : 𝜏si ⇒ Γ′

1:34 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

T-Seq
Σ; Δ; Γ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1

Σ; Δ; gc-loans(Γ1) ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ ⊢ 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

T-Branch
Σ; Δ; Γ ⊢ 𝑒1 : bool ⇒ Γ1 Σ; Δ; Γ1 ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ1 ⊢ 𝑒3 : 𝜏si3 ⇒ Γ3 𝜏si = 𝜏si2 ∨ 𝜏si = 𝜏si3
Δ; Γ2 ⊢ 𝜏si2 ≲ 𝜏si ⇒ Γ′2 Δ; Γ3 ⊢ 𝜏si3 ≲ 𝜏si ⇒ Γ′3 Γ′2 ⋓ Γ′3 = Γ′

Σ; Δ; Γ ⊢ if 𝑒1 { 𝑒2 } else { 𝑒3 } : 𝜏si ⇒ Γ′

T-LetProv
Σ; Δ; Γ , 𝑟 ↦→ {} ⊢ 𝑒 : 𝜏si ⇒ Γ′ , 𝑟 ↦→ {ℓ }

Σ; Δ; Γ ⊢ letprov <𝑟> { 𝑒 } : 𝜏si ⇒ Γ′

T-Let
Σ; Δ; Γ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1 Δ; Γ1 ⊢ 𝜏si1 ≲ 𝜏si𝑎 ⇒ Γ′1

Σ; Δ; gc-loans(Γ′1 , 𝑥 : 𝜏si𝑎) ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 , 𝑥 : 𝜏sd

Σ; Δ; Γ ⊢ let 𝑥 : 𝜏si𝑎 = 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

T-Assign
Σ; Δ; Γ ⊢ 𝑒 : 𝜏si ⇒ Γ1 Γ1 (𝜋) = 𝜏sx

(𝜏sx = 𝜏sd ∨ Δ; Γ1 ⊢uniq 𝜋 ⇒ { uniq𝜋 })
Δ; Γ1 ⊢ 𝜏si ≲ 𝜏sx ⇒ Γ′

Σ; Δ; Γ ⊢ 𝜋 ≔ 𝑒 : unit ⇒ Γ′ [𝜋 ↦→ 𝜏si] ▷− 𝜋

T-AssignDeref
Σ; Δ; Γ ⊢ 𝑒 : 𝜏si𝑛 ⇒ Γ1 Δ; Γ1 ⊢uniq 𝑝 : 𝜏si𝑜

Δ; Γ1 ⊢uniq 𝑝 ⇒ { ℓ } Δ; Γ1 ⊢ 𝜏si𝑛 ≲ 𝜏si𝑜 ⇒ Γ′

Σ; Δ; Γ ⊢ 𝑝 ≔ 𝑒 : unit ⇒ Γ′ ▷− 𝑝

T-While
Σ; Δ; Γ ⊢ 𝑒1 : bool ⇒ Γ1 Σ; Δ; Γ1 ⊢ 𝑒2 : unit ⇒ Γ2

Σ; Δ; Γ2 ⊢ 𝑒1 : bool ⇒ Γ2 Σ; Δ; Γ2 ⊢ 𝑒2 : unit ⇒ Γ2

Σ; Δ; Γ ⊢ while 𝑒1 { 𝑒2 } : unit ⇒ Γ2

T-ForArray
Σ; Δ; Γ ⊢ 𝑒1 : [𝜏si; 𝑛] ⇒ Γ1

Σ; Δ; Γ1 , 𝑥 : 𝜏si ⊢ 𝑒2 : unit ⇒ Γ1 , 𝑥 : 𝜏sd

Σ; Δ; Γ ⊢ for 𝑥 in 𝑒1 { 𝑒2 } : unit ⇒ Γ1

T-ForSlice
Σ; Δ; Γ ⊢ 𝑒1 : &𝜌 𝜔 [𝜏si] ⇒ Γ1

Σ; Δ; Γ1 , 𝑥 : &𝜌 𝜔 𝜏si ⊢ 𝑒2 : unit ⇒ Γ1 , 𝑥 : 𝜏sx1

Σ; Δ; Γ ⊢ for 𝑥 in 𝑒1 { 𝑒2 } : unit ⇒ Γ2

T-Function
Σ(𝑓) = fn 𝑓 <𝜑 , 𝜚 , 𝛼> (𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛) → 𝜏si𝑟 where 𝜚1 : 𝜚2 { 𝑒 }

Σ; Δ; Γ ⊢ 𝑓 : ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛) → 𝜏si𝑟 where 𝜚1 : 𝜚2 ⇒ Γ

T-Closure
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 free-nc-varsΓ (𝑒) = 𝑥𝑛𝑐 𝑟 = free-provs(Γ (𝑥𝑓)) , free-provs(𝑒)

F𝑐 = 𝑟 ↦→ Γ (𝑟) , 𝑥𝑓 : Γ (𝑥𝑓) Σ; Δ; Γ [𝑥𝑛𝑐 ↦→ Γ (𝑥𝑛𝑐)†] ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ ⊢ |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } : (𝜏si1 , . . . , 𝜏si𝑛) F𝑐→ 𝜏si𝑟 ⇒ Γ′

T-App
Σ; Δ; Γ ⊢ Φ Δ; Γ ⊢ 𝜌 Σ; Δ; Γ ⊢ 𝜏si

Σ; Δ; Γ ⊢ 𝑒𝑓 : ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛) Φ𝑐→ 𝜏si
𝑓
where 𝜚1 : 𝜚2 ⇒ Γ0

∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 [Φ/𝜑] [𝜌/𝜚] [𝜏si/𝛼] ⇒ Γ𝑖 Δ; Γ𝑛 ⊢ 𝜚2 [𝜌/𝜚] :> 𝜚1 [𝜌/𝜚] ⇒ Γ𝑏

Σ; Δ; Γ ⊢ 𝑒𝑓 ::<Φ , 𝜌 , 𝜏si> (𝑒1 , . . . , 𝑒𝑛) : 𝜏si
𝑓
[Φ/𝜑] [𝜌/𝜚] [𝜏si/𝛼] ⇒ Γ𝑏

Oxide: The Essence of Rust 1:35

T-Abort

Σ; Δ; Γ ⊢ abort!(str) : 𝜏sx ⇒ Γ′

T-Unit

Σ; Δ; Γ ⊢ () : unit ⇒ Γ

T-u32

Σ; Δ; Γ ⊢ 𝑛 : u32 ⇒ Γ

T-True

Σ; Δ; Γ ⊢ true : bool ⇒ Γ

T-False

Σ; Δ; Γ ⊢ false : bool ⇒ Γ

T-Tuple
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 ⇒ Γ𝑖

Σ; Δ; Γ0 ⊢ (𝑒1 , . . . , 𝑒𝑛) : (𝜏si1 , . . . , 𝜏si𝑛) ⇒ Γ𝑛

T-Array
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1 ⊢ 𝑒𝑖 : 𝜏si ⇒ Γ𝑖

Σ; Δ; Γ ⊢ [𝑒1 , . . . , 𝑒𝑛] : [𝜏si; 𝑛] ⇒ Γ𝑛

T-Slice
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1 ⊢ 𝑒𝑖 : 𝜏si ⇒ Γ𝑖

Σ; Δ; Γ ⊢ [𝑒1 , . . . , 𝑒𝑛] : [𝜏si] ⇒ Γ𝑛

T-Drop
Γ (𝜋) = 𝜏si𝜋 Σ; Δ; Γ [𝜋 ↦→ 𝜏si

†
𝜋] ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Σ; Δ; Γ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

B.5 Additional Judgments

𝜔 ≲ 𝜔′

read: “𝜔 is less than 𝜔′ in the qualifier ordering”

QO-Refl

𝜔 ≲ 𝜔

QO-ShrdUniq

shrd ≲ uniq

Σ; Δ ⊢ Γ ≲ Γ′

read: “Γ is related to Γ′ under Σ and Δ”

R-Env
⊢ Σ; Δ; Γ ⊢ Σ; Δ; Γ′ dom(Γ) = dom(Γ′)
∀𝑥 : 𝜏 ∈ Γ′. ∀𝑟 that occurs in 𝜏 . Γ (𝑟) = Γ′ (𝑟)

∀𝑟 ∈ dom(Γ) . Γ (𝑟) = Γ′ (𝑟) ∨ Γ′ (𝑟) = ∅
∀𝜋 ∈ dom(Γ) . Γ′ (𝜋) = Γ (𝜋) ∨ Γ′ (𝜋) = Γ (𝜋)†

Σ; Δ ⊢ Γ ≲ Γ′

Δ; Γ ⊢𝜔 𝑝 : 𝜏, { 𝜌 }
read: “𝑝 in an 𝜔 context has type 𝜏 under Δ and Γ, passing through provenances in 𝜌”

TC-Var
Γ (𝑥) = 𝜏si

Δ; Γ ⊢𝜔 𝑥 : 𝜏si, ∅

TC-Proj
Δ; Γ ⊢𝜔 𝑝 : (𝜏si1 , . . . , 𝜏si𝑖 , . . . , 𝜏si𝑛), { 𝜌𝑝 }

Δ; Γ ⊢𝜔 𝑝.𝑖 : 𝜏si𝑖 , { 𝜌𝑝 }

TC-Deref
Δ; Γ ⊢𝜔 𝑝 : &𝜌 𝜔′ 𝜏xi, { 𝜌𝑝 } 𝜔 ≲ 𝜔′ Δ; Γ ⊢ 𝜌 :> 𝜌𝑝 ⇒ Γ𝑓

Δ; Γ ⊢𝜔 ∗𝑝 : 𝜏xi, { 𝜌𝑝 , 𝜌 }

Δ; Γ ⊢𝜔 𝑝 : 𝜏
read: “𝑝 in an 𝜔 context has type 𝜏 under Δ and Γ”

Δ; Γ ⊢𝜔 𝑝 : 𝜏 = Δ; Γ ⊢𝜔 𝑝 : 𝜏, _

1:36 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

C METAFUNCTIONS
free-nc-vars𝜎 (𝑒) = all the variables 𝑥 free in 𝑒 which are bound to values in 𝜎 that are non-copyable.
free-nc-varsΓ (𝑒) = all the variables 𝑥 free in 𝑒 which are bound to types in Γ that are non-copyable.
𝜋1 #𝜋2 = 𝜋1 is not a prefix of 𝜋2 and 𝜋2 is not a prefix of 𝜋1 and 𝜋1 ≠ 𝜋2.

Γ1 ⋓ Γ2 = Γ

(Γ1, 𝑥 : 𝜏) ⋓ (Γ2, 𝑥 : 𝜏) = (Γ1 ⋓ Γ2), 𝑥 : 𝜏
(Γ1, 𝑟 : { ℓ }) ⋓ (Γ2, 𝑟 : { ℓ′ }) = (Γ1 ⋓ Γ2), 𝑟 ↦→ { ℓ, ℓ′ }
(Γ1 ♮ •) ⋓ (Γ2 ♮ •) = Γ1 ⋓ Γ2 ♮ •
• ⋓ • = •

places(Γ) = { 𝜋 }

places (•) = ∅
places (Γ , 𝑟 ↦→ { 𝜔𝑝 }) = { 𝜋 | 𝜔𝑖𝑝𝑖 ∈ { 𝜔𝑝 } ∧ (𝑝𝑖 = 𝜋 ∨ 𝑝𝑖 = 𝑝□ [∗𝜋]) } ∪ places Γ

places (Γ , 𝑥 : 𝜏) = places (Γ ♮ •) = places (Γ)

𝑣.𝑞⇝ C ⊞ 𝑣

DV-End

𝑣.𝜖 ⇝ □⊞ 𝑣

DV-Projection
𝑣𝑖 .𝑞⇝ C ⊞ 𝑣

(𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛) .𝑖 .𝑞⇝ (𝑣0 , . . . , C , . . . , 𝑣𝑛) ⊞ 𝑣

𝜎 [𝜋 ↦→ 𝑣]

𝜎 [𝑥.𝑞 ↦→ 𝑣] = 𝜎 [𝑥 ↦→ C[𝑣]]
where 𝜎 (𝑥) .𝑞⇝ C ⊞ _

𝜎 (𝜋) = 𝑣

𝜎 (𝑥.𝑞) = 𝑣

where 𝜎 (𝑥) .𝑞⇝ _ ⊞ 𝑣

𝜏 .𝑞⇝ 𝜏□ ⊞ 𝜏

D-End

𝜏 .𝜖 ⇝ □⊞ 𝜏

D-Projection
𝜏𝑖 .𝑞⇝ 𝜏□ ⊞ 𝜏

(𝜏0 , . . . , 𝜏𝑖 , . . . , 𝜏𝑛) .𝑖 .𝑞⇝ (𝜏0 , . . . , 𝜏□ , . . . , 𝜏𝑛) ⊞ 𝜏

Γ [𝜋 ↦→ 𝜏] = Γ′

Γ [𝑥.𝑞 ↦→ 𝜏] = Γ [𝑥 ↦→ 𝜏□ [𝜏]]
where Γ (𝑥) .𝑞⇝ 𝜏□ ⊞ _

Oxide: The Essence of Rust 1:37

Γ (𝜋) = 𝜏

Γ (𝑥.𝑞) = 𝜏

where Γ (𝑥) .𝑞⇝ _ ⊞ 𝜏

noncopyableΣ 𝜏

noncopyable Σ 𝜏
b = ⊥

noncopyable Σ 𝛼 = ⊤
noncopyable Σ &_ uniq _ = ⊤
noncopyable Σ &_ shrd _ = ⊥

noncopyable Σ ∀<_> (_) _→ _ = ⊥
noncopyable Σ [𝜏 ; _] = noncopyable Σ 𝜏

noncopyable Σ [𝜏] = noncopyable Σ 𝜏

noncopyable Σ (𝜏, . . .) = noncopyable Σ 𝜏 ∨ . . .

copyableΣ 𝜏

copyable Σ 𝜏 = ¬ noncopyable Σ 𝜏

𝑟1 occurs before 𝑟2 in Γ

OC-OccursBase
𝑟1 ∈ dom(Γ)

𝑟1 occurs before 𝑟2 in Γ , 𝑟2 ↦→ { ℓ }

OC-OccursExtendFrame
𝑟1 occurs before 𝑟2 in Γ

𝑟1 occurs before 𝑟2 in Γ, F′

OC-OccursNewFrame
𝑟1 occurs before 𝑟2 in Γ

𝑟1 occurs before 𝑟2 in Γ ♮ F

gc-loans(Γ)

gc-loans(Γ) = Γ [𝑟 ↦→ ∅]
where 𝑟 = { 𝑟 ∈ dom(Γ) | ∀𝜏 ∈ cod(Γ), 𝑟 does not occur in 𝜏 }

Γ ▷− 𝑝 = Γ′

Γ ▷− 𝑝 = Γ′ where dom(Γ) = dom(Γ′) and
∀𝑟 . Γ′ (𝑟) = { 𝜔𝑝′ ∈ Γ (𝑟) | 𝑝′ ≠ 𝑝□ [∗𝑝] } and
∀𝜋. Γ (𝜋) = Γ′ (𝜋)

1:38 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

D DYNAMICS

Referent R F 𝑥 | R .𝑛 | R [𝑛] | R [𝑛1 ..𝑛2]
Referent Context R□ F □ | R□ .𝑛 | R□ [𝑛] | R□ [𝑛1 ..𝑛2]
Expressions 𝑒 F . . . | ⟦𝑣1 , . . . , 𝑣𝑛⟧ | dead | framed 𝑒 | shift 𝑒 | ptr R

| ⟨𝜍 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩

Values 𝑣 F 𝑐 | (𝑣1 , . . . , 𝑣𝑛) | [𝑣1 , . . . , 𝑣𝑛] | ⟦𝑣1 , . . . , 𝑣𝑛⟧ | 𝑓 | dead | ptr R
| ⟨𝜍 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩

Eval. Contexts C F □
| &𝜌 𝜔 𝑝 [C] | &𝜌 𝜔 𝑝 [C..𝑒] | &𝜌 𝜔 𝑝 [𝑣..C]
| let 𝑥 : 𝜏si = C; 𝑒 | letprov <𝑟> { C }
| 𝑝 ≔ C | C; 𝑒 | framed C
| shift C | shiftprov C
| C::<Φ , 𝜌 , 𝜏si> (𝑒1 , . . . , 𝑒𝑛)
| 𝑣::<Φ , 𝜌 , 𝜏si> (𝑣1 , . . . , 𝑣𝑚 , C , 𝑒1 , . . . , 𝑒𝑛)
| 𝑝 [C] | if C { 𝑒1 } else { 𝑒2 }
| for 𝑥 in C { 𝑒 }
| (𝑣1 , . . . , 𝑣𝑚 , C , 𝑒1 , . . . , 𝑒𝑛)
| [𝑣1 , . . . , 𝑣𝑚 , C , 𝑒1 , . . . , 𝑒𝑛]

Value Contexts V F □ | (𝑣1 , . . . , V , . . . , 𝑣𝑛) | [𝑣1 , . . . , V1 , . . . , V𝑚 , . . . , 𝑣𝑛]
Stacks 𝜎 F • | 𝜎 ♮ 𝜍

Stack Frame 𝜍 F • | 𝜍 , 𝑥 ↦→ 𝑣

Σ; Γ ⊢ R : 𝜏xi

WF-RefId
Γ (𝑥) = 𝜏si

Σ; Γ ⊢ 𝑥 : 𝜏si

WF-RefProjection
Σ; Γ ⊢ R : (𝜏si0 , . . . , 𝜏si𝑖 , . . . , 𝜏si𝑛)

Σ; Γ ⊢ R .𝑖 : 𝜏si𝑖

WF-RefIndexArray
Σ; Γ ⊢ R : [𝜏si; 𝑛] 0 ≤ 𝑖 < 𝑛

Σ; Γ ⊢ R [𝑖] : 𝜏si

WF-RefIndexSlice
Σ; Γ ⊢ R : [𝜏si]
Σ; Γ ⊢ R [𝑖] : 𝜏si

WF-RefSliceArray
Σ; Γ ⊢ R : [𝜏si; 𝑛] 0 ≤ 𝑖 ≤ 𝑗 < 𝑛

Σ; Γ ⊢ R [𝑖 .. 𝑗] : [𝜏si]

WF-RefSliceSlice
Σ; Γ ⊢ R : [𝜏si] 𝑖 ≤ 𝑗

Σ; Γ ⊢ R [𝑖 .. 𝑗] : [𝜏si]

𝜎 ⊢ R ⇓ V × 𝑣

ER-Id
𝜎 (𝑥) = 𝑣

𝜎 ⊢ 𝑥 ⇓ □ × 𝑣

ER-Projection
𝜎 ⊢ R ⇓ V × (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛)

𝜎 ⊢ R .𝑖 ⇓ V[(𝑣0 , . . . , □ , . . . , 𝑣𝑛)] × 𝑣𝑖

ER-IndexArray
𝜎 ⊢ R ⇓ V × [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛]

𝜎 ⊢ R [𝑖] ⇓ V [[𝑣0 , . . . , □ , . . . , 𝑣𝑛]] × 𝑣𝑖

ER-IndexSlice
𝜎 ⊢ R ⇓ V × ⟦𝑣0 , . . . , 𝑣𝑘 , . . . , 𝑣𝑛⟧

𝜎 ⊢ R [𝑘] ⇓ V [𝑣0] . . . [□] . . . [𝑣𝑛] × 𝑣𝑖+𝑘

ER-SliceArray
𝜎 ⊢ R ⇓ V × [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛]

𝜎 ⊢ R [𝑖 .. 𝑗] ⇓ V [[𝑣0 , . . . , □𝑗−𝑖+1 , . . . , 𝑣𝑛]] × ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

ER-SliceSlice
𝜎 ⊢ R ⇓ V × ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛⟧

𝜎 ⊢ R [𝑖 .. 𝑗] ⇓ V [𝑣0] . . . [□] . . . [□] . . . [𝑣𝑛] × ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

Oxide: The Essence of Rust 1:39

𝜎 ⊢ 𝑝 ⇓ R ↦→ 𝑣

read: “𝑝 computes to R, which maps to 𝑣 in 𝜎 .”

Let 𝜎 ⊢ 𝑝□ [𝑥] ⇓ R ↦→ 𝑣 = 𝜎 ⊢ 𝑝□ × 𝑥 ⇓ R ↦→ 𝑣.

𝜎 ⊢ 𝑝 ⇓ V
read: “𝑝 computes to a value in 𝜎 with the context V”

Let 𝜎 ⊢ 𝑝□ [𝑥] ⇓ V = 𝜎 ⊢ 𝑝□ × 𝑥 ⇓ V × 𝑣.

𝜎 ⊢ 𝑝□ × R ⇓ R′ ↦→ 𝑣

read: “R in a context 𝑝□ computes to R′ which maps to 𝑣 in 𝜎 .”

P-Referent
𝜎 ⊢ R ⇓ _ × 𝑣

𝜎 ⊢ □ × R ⇓ R ↦→ 𝑣

P-Proj
𝜎 ⊢ 𝑝□ × R1 ⇓ R2 ↦→ (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛)

𝜎 ⊢ 𝑝□ [□.𝑖] × R1 ⇓ R2 .𝑖 ↦→ 𝑣𝑖

P-DerefPtr
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr 𝜋
𝜎 ⊢ 𝑝□ × 𝜋 ⇓ R2 ↦→ 𝑣

𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R2 ↦→ 𝑣

P-DerefIndexPtrArray
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛]
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖] ↦→ 𝑣𝑖

P-DerefIndexPtrSlice
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛⟧
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖] ↦→ 𝑣𝑖

P-DerefSlicePtrArray
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖 .. 𝑗]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛]
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖 .. 𝑗] ↦→ ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

P-DerefSlicePtrSlice
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖 .. 𝑗]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛⟧
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖 .. 𝑗] ↦→ ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

𝜎 ⊢ 𝑝□ × R ⇓ V × 𝑣

read: “R in a context 𝑝□ computes to a value in 𝜎 with the context V”

PC-Referent
𝜎 ⊢ R ⇓ V × 𝑣

𝜎 ⊢ □ × R ⇓ V × 𝑣

PC-Proj
𝜎 ⊢ 𝑝□ × R ⇓ V × (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛)

𝜎 ⊢ 𝑝□ [□.𝑖] × V ⇓ V[(𝑣0 , . . . , □ , . . . , 𝑣𝑛)] × 𝑣𝑖

PC-DerefPtr
𝜎 ⊢ □ × R1 ⇓ _ × ptr 𝜋
𝜎 ⊢ 𝑝□ × 𝜋 ⇓ V × 𝑣

𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ V × 𝑣

PC-DerefIndexPtrArray
𝜎 ⊢ □ × R1 ⇓ _ × ptr R2 [𝑖]

𝜎 ⊢ 𝑝□ × R2 ⇓ V × [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛]
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ V[[𝑣0 , . . . , □ , . . . , 𝑣𝑛]] × 𝑣𝑖

PC-DerefIndexPtrSlice
𝜎 ⊢ □ × R1 ⇓ _ × ptr R2 [𝑖]

𝜎 ⊢ 𝑝□ × R2 ⇓ V × ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛⟧
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ V[𝑣0] . . . [□] . . . [𝑣𝑛] × 𝑣𝑖

PC-DerefSlicePtrArray
𝜎 ⊢ □ × R1 ⇓ _ × ptr R2 [𝑖 .. 𝑗] 𝜎 ⊢ 𝑝□ × R2 ⇓ V × [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛]

𝜎 ⊢ 𝑝□ [(∗□)] × R1 ⇓ V[[𝑣0 , . . . , □𝑗−𝑖+1 , . . . , 𝑣𝑛]] × ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

PC-DerefSlicePtrSlice
𝜎 ⊢ □ × R1 ⇓ _ × ptr R2 [𝑖 .. 𝑗] 𝜎 ⊢ 𝑝□ × R2 ⇓ V × ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛⟧

𝜎 ⊢ 𝑝□ [(∗□)] × R1 ⇓ V[𝑣0] . . . [□] . . . [□] . . . [𝑣𝑛] × ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

1:40 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Σ ⊢ 𝜎 : Γ
read: “𝜎 satisfies Γ under global context Σ”

WF-StackEmpty

Σ ⊢ • : •

WF-StackFrame
Σ ⊢ 𝜎 : Γ dom(𝜍) = dom(F) |𝑥

∀𝑥 ∈ dom(𝜍) . Σ; •; Γ ♮ F ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F) (𝑥) ⇒ Γ ♮ F

Σ ⊢ 𝜎 ♮ 𝜍 : Γ ♮ F

Σ; Γ ⊢ 𝜍 : F𝑐
read: “𝜍 satisfies F𝑐 under Σ and Γ”

WF-Frame
dom(𝜍) = dom(F𝑐) |𝑥 ∀𝑥 ∈ dom(𝜍) . Σ; •; Γ ♮ F𝑐 ⊢ 𝜍 (𝑥) : F𝑐 (𝑥) ⇒ Γ ♮ F𝑐

Σ; Γ ⊢ 𝜍 : F𝑐

Σ; Δ; Γ ⊢ 𝑒 : 𝜏 ⇒ Γ′ where ⊢ Σ; Δ; Γ and Σ; Δ; Γ′ ⊢ 𝜏

. . .

T-Shift
Σ; Δ; Γ ⊢ 𝑒 : 𝜏si ⇒ Γ′ , 𝑥 : 𝜏sd

Σ; Δ; Γ ⊢ shift 𝑒 : 𝜏si ⇒ Γ′

T-Framed
Σ; Δ; Γ ⊢ 𝑒 : 𝜏si ⇒ Γ′ ♮ F′

Σ; Δ; Γ ⊢ framed 𝑒 : 𝜏si ⇒ Γ′

T-Pointer
Σ; Γ ⊢ R□ [𝜋] : 𝜏xi 𝜔𝜋 ∈ Γ (𝑟)

Σ; Δ; Γ ⊢ ptr R□ [𝜋] : &𝑟 𝜔 𝜏xi ⇒ Γ

T-ClosureValue
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 = dom(F𝑐) |𝑥 𝑟 = free-provs(Γ (𝑥𝑓)) , free-provs(𝑒) = dom(F𝑐) |𝑟

Σ; Γ ⊢ 𝜍𝑐 : F𝑐 Σ; Δ; Γ ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ ⊢ ⟨𝜍𝑐 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩ : (𝜏si1 , . . . , 𝜏si𝑛) F𝑐→ 𝜏si𝑟 ⇒ Γ

T-Dead

Σ; Δ; Γ ⊢ 𝑣 : 𝜏si
† ⇒ Γ

Σ ⊢ (𝜎 ; 𝑒) → (𝜎′; 𝑒′)
read: “𝜎 and 𝑒 step to 𝜎′ and 𝑒′ under Σ”

E-Move
𝜎 ⊢ 𝜋 ⇓ _ ↦→ 𝑣

Σ ⊢ (𝜎 ; 𝜋) → (𝜎 [𝜋 ↦→ dead]; 𝑣)

E-Copy
𝜎 ⊢ 𝑝 ⇓ _ ↦→ 𝑣

Σ ⊢ (𝜎 ; 𝑝) → (𝜎 ; 𝑣)

E-Borrow
𝜎 ⊢ 𝑝 ⇓ R ↦→ _

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝) → (𝜎 ; ptr R)

E-BorrowIndex
𝜎 ⊢ 𝑝 ⇓ R ↦→ [𝑣0 , . . . , 𝑣𝑛] 0 ≤ 𝑛𝑖 ≤ 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛𝑖]) → (𝜎 ; ptr R[𝑛𝑖])

E-BorrowSlice
𝜎 ⊢ 𝑝 ⇓ R ↦→ [𝑣0 , . . . , 𝑣𝑛] 0 ≤ 𝑛1 ≤ 𝑛2 ≤ 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛1 ..𝑛2]) → (𝜎 ; ptr R[𝑛1 ..𝑛2])

E-BorrowIndexOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ [𝑣0 , . . . , 𝑣𝑛] 𝑛𝑖 < 0 ∨ 𝑛𝑖 > 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 ∗ 𝑝 [𝑛𝑖]) → (𝜎 ; abort!(“attempted to index out of bounds”))

Oxide: The Essence of Rust 1:41

E-BorrowSliceOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ [𝑣0 , . . . , 𝑣𝑛] 𝑛1 < 0 ∨ 𝑛1 > 𝑛 ∨ 𝑛2 < 0 ∨ 𝑛2 > 𝑛 ∨ 𝑛1 > 𝑛2

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛1 ..𝑛2]) → (𝜎 ; abort!(“attempted to slice out of bounds”))

E-IndexCopy
𝜎 ⊢ 𝑝 ⇓ _ ↦→ [𝑣0 , . . . , 𝑣𝑛𝑖 , . . . , 𝑣𝑛]

Σ ⊢ (𝜎 ; 𝑝 [𝑛𝑖]) → (𝜎 ; 𝑣𝑛𝑖)

E-IndexCopyOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ [𝑣0 , . . . , 𝑣𝑛] 𝑛𝑖 < 0 ∨ 𝑛𝑖 > 𝑛

Σ ⊢ (𝜎 ; 𝑝 [𝑛𝑖]) → (𝜎 ; abort!(“attempted to index out of bounds”))

E-Framed

Σ ⊢ (𝜎 ♮ 𝜍 ; framed 𝑣) → (𝜎 ; 𝑣)

E-Shift

Σ ⊢ (𝜎 , 𝑥 ↦→ 𝑣′; shift 𝑣) → (𝜎 ; 𝑣)

E-IfTrue

Σ ⊢ (𝜎 ; if true { 𝑒1 } else { 𝑒2 }) → (𝜎 ; 𝑒1)

E-IfFalse

Σ ⊢ (𝜎 ; if false { 𝑒1 } else { 𝑒2 }) → (𝜎 ; 𝑒2)

E-LetProv

Σ ⊢ (𝜎 ; letprov <𝑟> { 𝑣 }) → (𝜎 ; 𝑣)

E-Let

Σ ⊢ (𝜎 ; let 𝑥 : 𝜏si𝑎 = 𝑣; 𝑒) → (𝜎 , 𝑥 ↦→ 𝑣; shift 𝑒)

E-Seq

Σ ⊢ (𝜎 ; 𝑣; 𝑒) → (𝜎 ; 𝑒)

E-Assign
𝜎 ⊢ 𝑝 ⇓ V 𝑝 = 𝑝□ [𝑥]

Σ ⊢ (𝜎 ; 𝑝 ≔ 𝑣) → (𝜎 [𝑥 ↦→ V [𝑣]]; ())

E-While

Σ ⊢ (𝜎 ; while 𝑒1 { 𝑒2 }) → (𝜎 ; if 𝑒1 { 𝑒2; while 𝑒1 { 𝑒2 } } else { () })

E-ForArray

Σ ⊢ (𝜎 ; for 𝑥 in [𝑣0 , . . . , 𝑣𝑛] { 𝑒 }) → (𝜎 , 𝑥 ↦→ 𝑣0; shift 𝑒 ; for 𝑥 in [𝑣1 , . . . , 𝑣𝑛] { 𝑒 })

E-ForSlice
𝜎 ⊢ R ⇓ _ ↦→ [𝑣1 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛] 𝑖 < 𝑗 𝑖′ = 𝑖 + 1

Σ ⊢ (𝜎 ; for 𝑥 in ptr R[𝑖 .. 𝑗] { 𝑒 }) → (𝜎 , 𝑥 ↦→ ptr R[𝑖]; shift 𝑒 ; for 𝑥 in ptr R[𝑖′.. 𝑗] { 𝑒 })

E-ForEmptyArray

Σ ⊢ (𝜎 ; for 𝑥 in [] { 𝑒 }) → (𝜎 ; ())

E-ForEmptySlice

Σ ⊢ (𝜎 ; for 𝑥 in ptr 𝜋 [𝑛..𝑛] { 𝑒 }) → (𝜎 ; ())

E-Closure
free-vars(𝑒) = 𝑥𝑓 free-nc-vars𝜎 (𝑒) = 𝑥𝑛𝑐 𝜍𝑐 = 𝜎 | 𝑥𝑓

Σ ⊢ (𝜎 ; |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 }) → (𝜎 [𝑥𝑛𝑐 ↦→ dead]; ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩)

E-AppClosure
𝑣𝑓 = ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩

Σ ⊢ (𝜎 ; 𝑣𝑓 (𝑣1 , . . . , 𝑣𝑛)) → (𝜎 ♮ 𝜍𝑐 , 𝑥1 ↦→ 𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 ; framed 𝑒)

E-AppFunction
Σ(𝑓) = fn 𝑓 <𝜑 , 𝜚 , 𝛼> (𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛) → 𝜏s𝑟 where 𝜚 : 𝜚 ′ { 𝑒 }

Σ ⊢ (𝜎 ; 𝑓 ::<Φ , 𝑟 ′ , 𝜏s> (𝑣1 , . . . , 𝑣𝑛)) → (𝜎 ♮ 𝑥1 ↦→ 𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 ; framed 𝑒 [Φ/𝜑] [𝑟 ′/𝜚] [𝜏
s/𝛼])

E-EvalCtx
Σ ⊢ (𝜎 ; 𝑒) → (𝜎′; 𝑒′)

Σ ⊢ (𝜎 ; C[𝑒]) → (𝜎′; C[𝑒′])

E-EvalCtxAbort

Σ ⊢ (𝜎 ; C[abort!(str)]) → (𝜎 ; abort!(str))

1:42 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

E METATHEORY
E.1 Supporting Lemmas

Lemma E.1 (Canonical Forms). If Σ; Δ; Γ ⊢ 𝑣 : 𝜏 ⇒ Γ then

(1) if 𝜏 = bool, then 𝑣 = true or 𝑣 = false.
(2) if 𝜏 = u32, then 𝑣 = 𝑛.

(3) if 𝜏 = unit, then 𝑣 = ().
(4) if 𝜏 = &𝜌 𝜔 𝜏 si, then 𝑣 is of the form ptr R.
(5) if 𝜏 = &𝜌 𝜔 [𝜏 si], then 𝑣 is of the form ptr R[𝑖 .. 𝑗].
(6) if 𝜏 = ∀<𝜑 , 𝜚 , 𝛼>(𝜏 si1 , . . . , 𝜏 si𝑛) → 𝜏 si𝑟 where 𝜚1 : 𝜚2, then 𝑣 is of the form 𝑓 .

(7) if 𝜏 = (𝜏 si1 , . . . , 𝜏 si𝑛)
F→ 𝜏 si𝑟 , then 𝑣 is of the form ⟨𝜎 , |𝑥1 : 𝜏 si1 , . . . , 𝑥𝑛 : 𝜏 si𝑛 | → 𝜏 si𝑟 { 𝑒 } ⟩.

(8) if 𝜏 = [𝜏 ′; 𝑛], then 𝑣 is of the form [𝑣1 , . . . , 𝑣𝑛].
(9) if 𝜏 = [𝜏 ′], then 𝑣 is of the form ⟦𝑣1 , . . . , 𝑣𝑛⟧.
(10) if 𝜏 = (𝜏1 , . . . , 𝜏𝑛), then 𝑣 is of the form (𝑣1 , . . . , 𝑣𝑛).

Proof. By inspection of the grammar of values and typing rules. □

Lemma E.2 (Well-Formed References Evaluate to Well-Typed Values). If Σ; Γ ⊢ R : 𝜏xi
and Σ ⊢ 𝜎 : Γ, then 𝜎 ⊢ R ⇓ V × 𝑣 .

Proof. We proceed by induction on Σ; Γ ⊢ R : 𝜏xi. There are six cases: WF-RefId, WF-RefProj,
WF-RefIndexArray, WF-RefIndexSlice, WF-RefSliceArray, and WF-RefSliceSlice. Each of these cases
has a corresponding evaluation rule:

WF-RefId
Γ (𝑥) = 𝜏si

Σ; Γ ⊢ 𝑥 : 𝜏si

ER-Id
𝜎 (𝑥) = 𝑣

𝜎 ⊢ 𝑥 ⇓ □ × 𝑣

For the base case, we consider the frame of Γ which contains 𝑥 . By inversion of WF-StackFrame for
the portion of the derivation Σ ⊢ 𝜎 : Γ pertaining to that frame, we have ∀𝑥 ∈ dom(𝜍). Σ; •; Γ ♮ F ⊢
(𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F)(𝑥) ⇒ Γ ♮ F . Focusing on our particular 𝑥 , we have both that 𝜎 (𝑥) = 𝑣 and
that Σ; •; Γ ♮ F ⊢ 𝑣 : (Γ ♮ F)(𝑥) ⇒ Γ ♮ F , finishing the case. The remaining cases follow:

WF-RefProjection
Σ; Γ ⊢ R : (𝜏si0 , . . . , 𝜏si𝑖 , . . . , 𝜏si𝑛)

Σ; Γ ⊢ R .𝑖 : 𝜏si𝑖

ER-Projection
𝜎 ⊢ R ⇓ V × (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛)

𝜎 ⊢ R .𝑖 ⇓ V[(𝑣0 , . . . , □ , . . . , 𝑣𝑛)] × 𝑣𝑖

WF-RefIndexArray
Σ; Γ ⊢ R : [𝜏si; 𝑛] 0 ≤ 𝑖 < 𝑛

Σ; Γ ⊢ R [𝑖] : 𝜏si

ER-IndexArray
𝜎 ⊢ R ⇓ V × [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛]

𝜎 ⊢ R [𝑖] ⇓ V [[𝑣0 , . . . , □ , . . . , 𝑣𝑛]] × 𝑣𝑖

WF-RefIndexSlice
Σ; Γ ⊢ R : [𝜏si]
Σ; Γ ⊢ R [𝑖] : 𝜏si

ER-IndexSlice
𝜎 ⊢ R ⇓ V × ⟦𝑣0 , . . . , 𝑣𝑘 , . . . , 𝑣𝑛⟧

𝜎 ⊢ R [𝑘] ⇓ V [𝑣0] . . . [□] . . . [𝑣𝑛] × 𝑣𝑖+𝑘

WF-RefSliceArray
Σ; Γ ⊢ R : [𝜏si; 𝑛] 0 ≤ 𝑖 ≤ 𝑗 < 𝑛

Σ; Γ ⊢ R [𝑖 .. 𝑗] : [𝜏si]

ER-SliceArray
𝜎 ⊢ R ⇓ V × [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛]

𝜎 ⊢ R [𝑖 .. 𝑗] ⇓ V [[𝑣0 , . . . , □𝑗−𝑖+1 , . . . , 𝑣𝑛]] × ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

Oxide: The Essence of Rust 1:43

WF-RefSliceSlice
Σ; Γ ⊢ R : [𝜏si] 𝑖 ≤ 𝑗

Σ; Γ ⊢ R [𝑖 .. 𝑗] : [𝜏si]

ER-SliceSlice
𝜎 ⊢ R ⇓ V × ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛⟧

𝜎 ⊢ R [𝑖 .. 𝑗] ⇓ V [𝑣0] . . . [□] . . . [□] . . . [𝑣𝑛] × ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

The proof for each case is identical: apply the induction hypothesis and then Lemma E.1 and
then the evaluation rule on the right. For the well-typed portion, apply inversion on the typing
rule for the appropriate value. □

Lemma E.3 (Place Expressions Reduce). If Δ; Γ ⊢𝜔 𝑝 : 𝜏xi and Σ ⊢ 𝜎 : Γ, then 𝜎 ⊢ 𝑝 ⇓ R ↦→ 𝑣

and Σ; Δ; Γ ⊢ 𝑣 : 𝜏xi ⇒ Γ.

Proof. We proceed by induction on Δ; Γ ⊢𝜔 𝑝 : 𝜏xi. There are three cases: TC-Var, TC-Proj, and
TC-Deref.

TC-Var
Γ (𝑥) = 𝜏si

Δ; Γ ⊢𝜔 𝑥 : 𝜏si, ∅

P-Referent
𝜎 ⊢ R ⇓ _ × 𝑣

𝜎 ⊢ □ × R ⇓ R ↦→ 𝑣

For TC-Var, we consider the piece of the derivation for Σ ⊢ 𝜎 : Γ (from our premise) for the frame
containing 𝑥 . By inversion on WF-StackFrame, we have ∀𝑥 ∈ dom(𝜍). Σ; •; Γ ♮ F ⊢ (𝜎 ♮ 𝜍) (𝑥) :
(Γ ♮ F)(𝑥) ⇒ Γ ♮ F . This immediately gives us that 𝜎 (𝑥) = 𝑣 and that Σ; Δ; Γ ⊢ 𝑣 : 𝜏xi ⇒ Γ. To
construct our premise for P-Referent, we apply ER-Id to 𝜎 (𝑥) = 𝑣 .

TC-Proj
Δ; Γ ⊢𝜔 𝑝 : (𝜏si1 , . . . , 𝜏si𝑖 , . . . , 𝜏si𝑛), { 𝜌𝑝 }

Δ; Γ ⊢𝜔 𝑝.𝑖 : 𝜏si𝑖 , { 𝜌𝑝 }

P-Proj
𝜎 ⊢ 𝑝□ × R1 ⇓ R2 ↦→ (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛)

𝜎 ⊢ 𝑝□ [□.𝑖] × R1 ⇓ R2 .𝑖 ↦→ 𝑣𝑖

For TC-Proj, we apply our induction hypothesis to Δ; Γ ⊢𝜔 𝑝 : (𝜏si1 , . . . , 𝜏si
𝑖
, . . . , 𝜏si𝑛), { 𝜌𝑝 }

from the premise of TC-Proj and get 𝜎 ⊢ 𝑝 ⇓ R ↦→ 𝑣 and Σ; Δ; Γ ⊢ 𝑣 : (𝜏si1 , . . . , 𝜏si
𝑖
, . . . , 𝜏si𝑛) ⇒ Γ.

Then, by Lemma E.1, we know that 𝑣 must be of the form (𝑣1 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛). We can use this and
the definition of 𝜎 ⊢ 𝑝 ⇓ R ↦→ 𝑣 to get 𝜎 ⊢ 𝑝□ × 𝑥 ⇓ R ↦→ (𝑣1 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛) (where 𝑝□ [𝑥] = 𝑝).
This is precisely the premise of P-Proj and thus we can use that. We also have by inversion of
T-Tuple for Σ; Δ; Γ ⊢ 𝑣 : (𝜏si1 , . . . , 𝜏si

𝑖
, . . . , 𝜏si𝑛) ⇒ Γ that Σ; Δ; Γ ⊢ 𝑣𝑖 : 𝜏si

𝑖
⇒ Γ.

TC-Deref
Δ; Γ ⊢𝜔 𝑝 : &𝜌 𝜔′ 𝜏xi, { 𝜌𝑝 } 𝜔 ≲ 𝜔′ Δ; Γ ⊢ 𝜌 :> 𝜌𝑝 ⇒ Γ𝑓

Δ; Γ ⊢𝜔 ∗𝑝 : 𝜏xi, { 𝜌𝑝 , 𝜌 }

For TC-Deref, we apply our induction hypothesis to Δ; Γ ⊢𝜔 𝑝 : &𝜌 𝜔 ′ 𝜏xi, { 𝜌𝑝 } to get
𝜎 ⊢ 𝑝 ⇓ R ↦→ 𝑣 and Σ; Δ; Γ ⊢ 𝑣 : &𝜌 𝜔 ′ 𝜏xi ⇒ Γ. Then, by Lemma E.1, we know that 𝑣 must of
the form ptr R. We now have five subcases to consider depending on whether R is of 𝜋 , R3 [𝑖], or
R[𝑖 .. 𝑗], and for the latter two, whether 𝜏xi is [𝜏si; 𝑛] or [𝜏si].

1:44 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

P-DerefPtr
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr 𝜋
𝜎 ⊢ 𝑝□ × 𝜋 ⇓ R2 ↦→ 𝑣

𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R2 ↦→ 𝑣

P-DerefIndexPtrArray
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛]
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖] ↦→ 𝑣𝑖

P-DerefIndexPtrSlice
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛⟧
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖] ↦→ 𝑣𝑖

P-DerefSlicePtrArray
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖 .. 𝑗]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛]
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖 .. 𝑗] ↦→ ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

P-DerefSlicePtrSlice
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖 .. 𝑗]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛⟧
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖 .. 𝑗] ↦→ ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

In all these cases, we know structurally that 𝑝□ = □ since TC-Deref has no context outside of
the dereference. So, for each of them, we need to be able to show □ ⊢ R ⇓ R ′ ↦→ 𝑣 ′. Inversion on
T-Pointer gives us Σ; Γ ⊢ R : 𝜏xi. We can then apply Lemma E.2 to get Σ ⊢ Γ ⇓ V × 𝑣 . Then, we
can apply P-Referent to this to produce the derivation we need to apply the appropriate rule. For
P-DerefIndexPtrArray and P-DerefSlicePtrArray, we apply Lemma E.1 to get that the value is
an array. For P-DerefIndexPtrSlice and P-DerefSlicePtrSlice, we apply Lemma E.1 to get that the
value is a slice value. □

Lemma E.4 (Reducible Place Expressions can also Compute a Context). If 𝜎 ⊢ 𝑝 ⇓ R ↦→ 𝑣

and R ≠ R[𝑖 .. 𝑗], then 𝜎 ⊢ 𝑝 ⇓ V .

Proof. The proof proceeds by induction on 𝜎 ⊢ 𝑝 ⇓ R ↦→ 𝑣 by cases. Since the two judgments
share an identical inductive structure, we essentially pair the corresponding rules as follows:

P-Referent
𝜎 ⊢ R ⇓ _ × 𝑣

𝜎 ⊢ □ × R ⇓ R ↦→ 𝑣

PC-Referent
𝜎 ⊢ R ⇓ V × 𝑣

𝜎 ⊢ □ × R ⇓ V × 𝑣

P-Proj
𝜎 ⊢ 𝑝□ × R1 ⇓ R2 ↦→ (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛)

𝜎 ⊢ 𝑝□ [□.𝑖] × R1 ⇓ R2 .𝑖 ↦→ 𝑣𝑖

PC-Proj
𝜎 ⊢ 𝑝□ × R ⇓ V × (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛)

𝜎 ⊢ 𝑝□ [□.𝑖] × V ⇓ V[(𝑣0 , . . . , □ , . . . , 𝑣𝑛)] × 𝑣𝑖

P-DerefPtr
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr 𝜋
𝜎 ⊢ 𝑝□ × 𝜋 ⇓ R2 ↦→ 𝑣

𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R2 ↦→ 𝑣

PC-DerefPtr
𝜎 ⊢ □ × R1 ⇓ _ × ptr 𝜋
𝜎 ⊢ 𝑝□ × 𝜋 ⇓ V × 𝑣

𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ V × 𝑣

P-DerefIndexPtrArray
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛]
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖] ↦→ 𝑣𝑖

PC-DerefIndexPtrArray
𝜎 ⊢ □ × R1 ⇓ _ × ptr R2 [𝑖]

𝜎 ⊢ 𝑝□ × R2 ⇓ V × [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛]
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ V[[𝑣0 , . . . , □ , . . . , 𝑣𝑛]] × 𝑣𝑖

P-DerefIndexPtrSlice
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛⟧
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖] ↦→ 𝑣𝑖

PC-DerefIndexPtrSlice
𝜎 ⊢ □ × R1 ⇓ _ × ptr R2 [𝑖]

𝜎 ⊢ 𝑝□ × R2 ⇓ V × ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛⟧
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ V[𝑣0] . . . [□] . . . [𝑣𝑛] × 𝑣𝑖

Oxide: The Essence of Rust 1:45

P-DerefSlicePtrArray
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖 .. 𝑗]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛]
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖 .. 𝑗] ↦→ ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

PC-DerefSlicePtrArray
𝜎 ⊢ □ × R1 ⇓ _ × ptr R2 [𝑖 .. 𝑗] 𝜎 ⊢ 𝑝□ × R2 ⇓ V × [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛]

𝜎 ⊢ 𝑝□ [(∗□)] × R1 ⇓ V[[𝑣0 , . . . , □𝑗−𝑖+1 , . . . , 𝑣𝑛]] × ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

P-DerefSlicePtrSlice
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖 .. 𝑗]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛⟧
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖 .. 𝑗] ↦→ ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

PC-DerefSlicePtrSlice
𝜎 ⊢ □ × R1 ⇓ _ × ptr R2 [𝑖 .. 𝑗] 𝜎 ⊢ 𝑝□ × R2 ⇓ V × ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛⟧

𝜎 ⊢ 𝑝□ [(∗□)] × R1 ⇓ V[𝑣0] . . . [□] . . . [□] . . . [𝑣𝑛] × ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧
□

Lemma E.5 (Reduced Place Expressions Produce Valid Referents). If Σ ⊢ 𝜎 : Γ and 𝜎 ⊢ 𝑝 ⇓
R□ [𝜋] ↦→ 𝑣 , then Σ; Γ ⊢ R□ [𝜋] : 𝜏xi.

Proof. We start by rewriting 𝜎 ⊢ 𝑝 ⇓ R□ [𝜋] ↦→ 𝑣 with its definition to get 𝜎 ⊢ 𝑝□ × 𝑥 ⇓
R□ [𝜋] ↦→ 𝑣 where 𝑝 = 𝑝□ [𝑥]. We then proceed by induction by cases (note this means our
induction hypothesis is really about the rewritten form).

P-Referent
𝜎 ⊢ R ⇓ _ × 𝑣

𝜎 ⊢ □ × R ⇓ R ↦→ 𝑣

WF-RefId
Γ (𝑥) = 𝜏si

Σ; Γ ⊢ 𝑥 : 𝜏si

P-Referent only applies if the context is □ which is only the case if our original place expression
was 𝑥 . We can rewrite with this knowledge to see that we really have 𝜎 ⊢ 𝑥 ⇓ _ × 𝑣 in our premise.
Inversion on ER-Id gives us 𝜎 (𝑣) = Then, we consider the frame of Γ which contains 𝑥 . By inversion
of WF-StackFrame for the portion of the derivation Σ ⊢ 𝜎 : Γ pertaining to that frame, we have
∀𝑥 ∈ dom(𝜍). Σ; •; Γ ♮ F ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F)(𝑥) ⇒ Γ ♮ F . Focusing on our particular 𝑥 , we
have both that Γ(𝑥) = 𝑣 . We can then apply WF-RefId.

P-Proj
𝜎 ⊢ 𝑝□ × R1 ⇓ R2 ↦→ (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛)

𝜎 ⊢ 𝑝□ [□.𝑖] × R1 ⇓ R2 .𝑖 ↦→ 𝑣𝑖

WF-RefProjection
Σ; Γ ⊢ R : (𝜏si0 , . . . , 𝜏si𝑖 , . . . , 𝜏si𝑛)

Σ; Γ ⊢ R .𝑖 : 𝜏si𝑖

Applying the induction hypothesis to 𝜎 ⊢ 𝑝□ × R1 ⇓ R2 ↦→ (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛) gives us
Σ; Γ ⊢ R2 : (𝜏si0 , . . . , 𝜏si

𝑖
, . . . , 𝜏si𝑛). We can then apply WF-RefProjection.

P-DerefPtr
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr 𝜋
𝜎 ⊢ 𝑝□ × 𝜋 ⇓ R2 ↦→ 𝑣

𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R2 ↦→ 𝑣

1:46 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Applying the induction hypothesis to 𝜎 ⊢ 𝑝□ × 𝜋 ⇓ R2 ↦→ 𝑣 gives us Σ; Γ ⊢ R2 : 𝜏xi.

P-DerefIndexPtrArray
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛]
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖] ↦→ 𝑣𝑖

WF-RefIndexArray
Σ; Γ ⊢ R : [𝜏si; 𝑛] 0 ≤ 𝑖 < 𝑛

Σ; Γ ⊢ R [𝑖] : 𝜏si

Applying the induction hypothesis to 𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛] gives us
Σ; Γ ⊢ R3 : [𝜏si; 𝑛]. Then, we can apply WF-RefIndexArray to get Σ; Γ ⊢ R3 [𝑖] : 𝜏si.

P-DerefIndexPtrSlice
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛⟧
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖] ↦→ 𝑣𝑖

WF-RefIndexSlice
Σ; Γ ⊢ R : [𝜏si]
Σ; Γ ⊢ R [𝑖] : 𝜏si

Applying the induction hypothesis to 𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛⟧ gives us
Σ; Γ ⊢ R3 : [𝜏si]. Then, we can apply WF-RefIndexSlice to get Σ; Γ ⊢ R3 [𝑖] : 𝜏si.

P-DerefSlicePtrArray
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖 .. 𝑗]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛]
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖 .. 𝑗] ↦→ ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

WF-RefSliceArray
Σ; Γ ⊢ R : [𝜏si; 𝑛] 0 ≤ 𝑖 ≤ 𝑗 < 𝑛

Σ; Γ ⊢ R [𝑖 .. 𝑗] : [𝜏si]

Applying the induction hypothesis to 𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣 𝑗 , . . . , 𝑣𝑛] gives
us Σ; Γ ⊢ R3 : [𝜏si; 𝑛]. Then, we can apply WF-RefSliceArray to get Σ; Γ ⊢ R3 [𝑖 .. 𝑗] : 𝜏si.

P-DerefSlicePtrSlice
𝜎 ⊢ □ × R1 ⇓ _ ↦→ ptr R2 [𝑖 .. 𝑗]

𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛⟧
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ R3 [𝑖 .. 𝑗] ↦→ ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

WF-RefSliceSlice
Σ; Γ ⊢ R : [𝜏si] 𝑖 ≤ 𝑗

Σ; Γ ⊢ R [𝑖 .. 𝑗] : [𝜏si]

Applying the induction hypothesis to 𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣 𝑗 , . . . , 𝑣𝑛⟧ gives
us Σ; Γ ⊢ R3 : [𝜏si]. Then, we can apply WF-RefSliceSlice to get Σ; Γ ⊢ R3 [𝑖 .. 𝑗] : 𝜏si. □

Lemma E.6 (Reduced Place Expressions Have Roots in Loan Sets). If Σ ⊢ 𝜎 : Γ, 𝜎 ⊢ 𝑝 ⇓
R□ [𝜋] ↦→ 𝑣 , and •; Γ ⊢𝜔 𝑝 ⇒ { ℓ }, then R = R□ [𝜋] and 𝜔𝜋 ∈ { ℓ }.

Proof. We proceed by induction on •; Γ ⊢𝜔 𝑝 ⇒ { ℓ }. There are ordinarily three cases: O-
SafePlace, O-Deref, and O-DerefAbs. However, O-DerefAbs requires the type variable context to
contain entries, and thus can be immediately discharged by contradiction. This leaves us with only
O-SafePlace and O-Deref.

O-SafePlace
∀𝑟 ′ ↦→ { ℓ } ∈ Γ. (∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝜋 ′ #𝜋)
∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ. 𝜋 ′ ∈ { 𝜋𝑒 }))

Δ; Γ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }

Oxide: The Essence of Rust 1:47

O-SafePlace tells us that our 𝑝 is in fact a place 𝜋 meaning that it does not contain any dereferences.
As such, we know that 𝜎 ⊢ 𝑝 ⇓ R□ [𝜋] ↦→ 𝑣 must have been derived using a combination of P-
Referent and P-Proj corresponding to the structure of 𝜋 . The resulting referent in such a case is
precisely 𝜋 (meaning R□ = □), which we know is in the output immediately from the definition of
O-SafePlace.

O-Deref
Γ (𝜋) = &𝑟 𝜔𝜋 𝜏𝜋 Γ (𝑟) = { 𝜔′

𝑝𝑖 } 𝑝𝑖 = 𝑝□
𝑖
[𝜋𝑖] 𝜔 ≲ 𝜔𝜋

∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ ⊢𝜋𝑒 , 𝜋𝑖 , 𝜋
𝜔 𝑝□ [𝑝𝑖] ⇒ { 𝜔𝑝′

𝑖
}

∀𝑟 ′ ↦→ { ℓ } ∈ Γ. (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ. 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋𝑖 , 𝜋 }))

Δ; Γ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋] ⇒ { 𝜔𝑝′1 , . . . 𝜔𝑝′𝑛 , 𝜔𝑝□ [∗𝜋] }

In the premise of O-Deref, we have a number of ownership safety derivations corresponding to
each of the loans for the pointer being dereferenced. Since we know we have a dereference, we
know that we must have derived 𝜎 ⊢ 𝑝 ⇓ R□ [𝜋] ↦→ 𝑣 using one of the five dereference rules at the
appropriate point (P-DerefPtr, P-DerefIndexPtrArray, P-DerefIndexPtrSlice, P-DerefSlicePtrArray,
and P-DerefSlicePtrSlice). Each of which share a common premise (at least when sufficiently
generalized): 𝜎 ⊢ 𝑝□ × R2 ⇓ R3 ↦→ 𝑣 . Here, R2 corresponds to the referent of the pointer we are
dereferencing. As such, we know that one of the derivations of ownership safety corresponds to
that particular referent. So, we can apply our induction hypothesis and get that 𝜔𝜋 ∈ { 𝜔𝑝 ′

𝑖
} for

the appropriate ownership safety derivation numbered i. The final output is the union of all of
these sets, and thus we can generalize to 𝜔𝜋 ∈ { 𝜔𝑝 ′

1 , . . . ,
𝜔𝑝 ′

𝑛 , . . . , 𝜔𝑝□ ∗𝜋 }. □

Lemma E.7 (Subtyping Preserves Value Typing). If Σ; Δ; Γ ⊢ 𝑣 : 𝜏 ⇒ Γ and Δ; Γ ⊢ 𝜏2 ≲
𝜏1 ⇒ Γ′ then Σ; Δ; Γ′ ⊢ 𝑣 : 𝜏 ⇒ Γ′.

Proof. We proceed by induction on the subtyping judgement. The only cases that don’t follow
immediately by induction and application of premises are S-UniqeRef and S-SharedRef, and in
both cases the only interesting part of the proof is the outlives constraint.

Proceeding by induction on the outlives constraint, the only interesting case is
OL-LocalProvenances.

OL-LocalProvenances
∀𝜋 : &𝑟1 𝜔 𝜏 ∈ Γ. �𝑟 ′. 𝜔 ∗𝜋 ∈ Γ (𝑟 ′)

𝑟1 occurs before 𝑟2 in Γ

Δ; Γ ⊢ 𝑟1 :> 𝑟2 ⇒ Γ [𝑟2 ↦→ { Γ (𝑟1) ∪ Γ (𝑟2) }]

So we want to show that Σ; Δ; Γ [𝑟2 ↦→ Γ(1) ∪ Γ(2)] ⊢ 𝑣 : 𝜏 ⇒ Γ [𝑟2 ↦→ Γ(1) ∪ Γ(2)]. We
proceed by induction on the value typing.

T-Pointer
Σ; Γ ⊢ R□ [𝜋] : 𝜏xi 𝜔𝜋 ∈ Γ (𝑟)

Σ; Δ; Γ ⊢ ptr R□ [𝜋] : &𝑟 𝜔 𝜏xi ⇒ Γ

The T-Pointer case is immediate, because by inspection of the referent well formedness, there is
no reliance on loan sets, and the loan is preserved since the loan sets only grow.

1:48 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

T-ClosureValue
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 = dom(F𝑐) |𝑥 𝑟 = free-provs(Γ (𝑥𝑓)) , free-provs(𝑒) = dom(F𝑐) |𝑟

Σ; Γ ⊢ 𝜍𝑐 : F𝑐 Σ; Δ; Γ ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ ⊢ ⟨𝜍𝑐 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩ : (𝜏si1 , . . . , 𝜏si𝑛) F𝑐→ 𝜏si𝑟 ⇒ Γ

We proceed by induction on the body of the closure. The only interesting cases are those that use
ownership safety, which are T-Move, T-Copy, T-Borrow, T-BorrowIndex, T-BorrowSlice, T-IndexCopy,
and T-AssignDeref. The only interesting part is the ownership safety judgement itself, but since
we’re only unioning together two loan sets, the disjointness condition is mostly immediate, since
those places would have been considered anyway. The only potential problem is that 𝑟1 is excluded
in a reborrow chain and not 𝑟2, but then the only way for all of the pointers with 𝑟1 to be added to
the exclusion list is if all of them were reborrowed, but this is disallowed by the reborrow restriction
on 𝑟1 in OL-LocalProvenances. □

Lemma E.8 (Subtyping Preserves Well Formed Stacks). If Σ ⊢ 𝜎 : Γ and •; Γ ⊢ 𝜏2 ≲ 𝜏1 ⇒ Γ′

then Σ ⊢ 𝜎 : Γ′.

Proof. We proceed by induction on the stack typing derivation.

WF-StackFrame
Σ ⊢ 𝜎 : Γ dom(𝜍) = dom(F) |𝑥

∀𝑥 ∈ dom(𝜍) . Σ; •; Γ ♮ F ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F) (𝑥) ⇒ Γ ♮ F

Σ ⊢ 𝜎 ♮ 𝜍 : Γ ♮ F

WF-StackEmpty

Σ ⊢ • : •

The WF-StackEmpty case is immediate. In the WF-StackFrame case, we get the well formedness
in the premise from our induction hypothesis. What’s left to show is that for all of the values 𝑣 in
the stack frame, they remain well typed in Γ′. This follows from applying Lemma E.7. □

Lemma E.9 (Values Change Environments in Limited Ways). If Σ; Δ; Γ ⊢ 𝑣 : 𝜏 ⇒ Γ′ , then

Σ; Δ ⊢ Γ ≲ Γ′.

Proof. We proceed by induction on the structure of the typing derivation. Since we assume that
the expression being typed is a value, we need only consider the cases that can be used to type a
value.

Formany cases, the output environments are precisely the input environments, and thus this holds
immediately. These cases are T-Unit, T-u32, T-True, T-False, T-Pointer, T-Function, T-ClosureValue,
and T-Dead.
For T-Tuple and T-Array, knowing that we have a value means that all of the subterms are

themselves values, and thus we can apply our induction hypothesis to them in sequence (relying
on the transitivity of ≲ for stack typings).

This leaves us with one remaining case: T-Drop.

T-Drop
Γ (𝜋) = 𝜏si𝜋 Σ; Δ; Γ [𝜋 ↦→ 𝜏si

†
𝜋] ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Σ; Δ; Γ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Oxide: The Essence of Rust 1:49

For T-Drop, we apply our induction hypothesis to Σ; Δ; Γ [𝜋 ↦→ 𝜏si
†

𝜋] ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓 which tells
us that Σ; Δ ⊢ Γ [𝜋 ↦→ 𝜏si

†
𝜋] ≲ Γ𝑓 . Then, by R-Env, we have that Σ; Δ ⊢ Γ ≲ Γ [𝜋 ↦→ 𝜏si

†
𝜋]. Then, by

transitivity, we have Σ; Δ ⊢ Γ ≲ Γ𝑓 . □

Lemma E.10 (Preservation of Types under Substitution).

(1) If Σ; Δ , 𝛼 :★; Γ ⊢ 𝑒 : 𝜏 ⇒ Γ′ and Σ; Δ; Γ ⊢ 𝜏 ′, then Σ; Δ; Γ ⊢ 𝑒 [𝜏 ′/𝛼] : 𝜏 [𝜏 ′/𝛼] ⇒ Γ′[𝜏 ′/𝛼]
(2) If Σ; Δ , 𝜚 : PRV; Γ ⊢ 𝑒 : 𝜏 ⇒ Γ′ and Δ; Γ ⊢ 𝜌 , then Σ; Δ; Γ ⊢ 𝑒 [𝜌/𝜚] : 𝜏 [𝜌/𝜚] ⇒ Γ′[𝜌/𝜚]

(3) If Σ; Δ , 𝜑 :FRM; Γ ⊢ 𝑒 : 𝜏 ⇒ Γ′ and Σ; Δ; Γ ⊢ Φ, then Σ; Δ; Γ ⊢ 𝑒 [Φ/𝜑] : 𝜏 [Φ/𝜑] ⇒ Γ′[Φ/𝜑]

Proof. By induction on the typing derivation. □

Lemma E.11 (Type Computation is Preserved in Related Environments). If Σ; Δ ⊢ Γ ≲ Γ′

and Δ; Γ ⊢𝜔 𝑝□ [𝜋] : 𝜏, { 𝜌 } and Γ(𝜋) = Γ′(𝜋), then Δ; Γ′ ⊢𝜔 𝑝□ [𝜋] : 𝜏, { 𝜌 }.

Proof. Weproceed by induction on the type computation derivation. TC-Var follows immediately
by the same type hypothesis, and TC-Proj follows from applying the induction hypothesis. All that
is left is TC-Deref.

TC-Deref
Δ; Γ ⊢𝜔 𝑝 : &𝜌 𝜔′ 𝜏xi, { 𝜌𝑝 } 𝜔 ≲ 𝜔′ Δ; Γ ⊢ 𝜌 :> 𝜌𝑝 ⇒ Γ𝑓

Δ; Γ ⊢𝜔 ∗𝑝 : 𝜏xi, { 𝜌𝑝 , 𝜌 }

First, we can apply the induction hypothesis to get the type computation for 𝑝 . Then, all that’s
left is to show the outlives constraint, but this is immediate because Δ is unchanged and both Γ
and Γ′ have the exact same domains.

□

Lemma E.12 (Ownership Safety Preserved in Related Environments). If Δ; Γ ⊢𝜋𝑒𝜔 𝑝 ⇒ { ℓ }
and Σ; Δ ⊢ Γ ≲ Γ′ and Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi and 𝑝 = 𝑝□ [𝜋𝑝] and Γ(𝜋𝑝) = Γ′(𝜋𝑝), then Δ; Γ′ ⊢𝜋𝑒𝜔 𝑝 ⇒ {ℓ }.

Proof. We proceed by induction on the 𝜔-safety derivation, for which there are three cases to
consider.

O-SafePlace
∀𝑟 ′ ↦→ { ℓ } ∈ Γ. (∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝜋 ′ #𝜋)
∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ. 𝜋 ′ ∈ { 𝜋𝑒 }))

Δ; Γ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }

We’d like to show that O-SafePlace can be applied with context Γ′. First, note that for any 𝑟 ′, if
the right side of the or is true for Γ with 𝜋 then it will be true for Γ′ with 𝜋 . That is, if all of the
pointers with provenance 𝑟 ′ in Γ are in the exclusion list 𝜋 , then all of the pointers with provenance
𝑟 ′ in Γ′ are also in the exclusion list 𝜋 . Therefore, the only cases we need to consider are where 𝑟 ′
occurs in pointers in Γ and Γ′ that do not occur in 𝜋 .

Since the only allowed change to loan sets is emptying, and an emptied loan set has the left side
of the disjunction as vacuously true, and if the loan set is the same we have the condition from the
ownership safety in the premise, we are done.

1:50 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

O-Deref
Γ (𝜋) = &𝑟 𝜔𝜋 𝜏𝜋 Γ (𝑟) = { 𝜔′

𝑝𝑖 } 𝑝𝑖 = 𝑝□
𝑖
[𝜋𝑖] 𝜔 ≲ 𝜔𝜋

∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ ⊢𝜋𝑒 , 𝜋𝑖 , 𝜋
𝜔 𝑝□ [𝑝𝑖] ⇒ { 𝜔𝑝′

𝑖
}

∀𝑟 ′ ↦→ { ℓ } ∈ Γ. (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ. 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋𝑖 , 𝜋 }))

Δ; Γ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋] ⇒ { 𝜔𝑝′1 , . . . 𝜔𝑝′𝑛 , 𝜔𝑝□ [∗𝜋] }

Firstly, we have that Γ(𝜋𝑖) = Γ′(𝜋𝑖), because Γ′(𝜋𝑖) must be an initialized type by the type
computation premise, and the only changes in types between Γ and Γ′ allowed by the environment
relation is dropping some types to uninitialized.

Second, note that Γ′(𝑟) = Γ(𝑟) since Γ′(𝜋) being a reference with provenance 𝑟 means we can’t
empty the loan set. So we proceed by applying the induction hypothesis for all 𝑛 loans, noting that
the type computation requirement follows from the well formedness of Γ′.
Finally, we have to show the statement about no conflicting loans, but here the argument is

identical to that in the O-SafePlace case. If the loan set is empty then we’re done, otherwise we just
use the ownership safety premise.

O-DerefAbs
Γ (𝜋) = &𝜚 𝜔𝜋 𝜏𝜋 Δ; Γ ⊢𝜔 𝑝□ [∗𝜋] : 𝜏 𝜔 ≲ 𝜔𝜋

∀𝑟 ′ ↦→ { ℓ } ∈ Γ. (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ Γ. 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋 }))

Δ; Γ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋] ⇒ { 𝜔𝑝□ [∗𝜋] }

This case proceeds similarly to the O-Deref case, but with an added application of Lemma E.11
to get the type computation, and no application of any induction hypothesis. □

Lemma E.13 (Types Are Well Formed in Related Environments). If Σ; Δ ⊢ Γ ≲ Γ′ and
Σ; Δ; Γ ⊢ 𝜏xi and ∀𝑟 that occur in 𝜏xi, Γ(𝑟) = Γ′(𝑟), then Σ; Δ; Γ′ ⊢ 𝜏xi.

Proof. We proceed by induction on the type well formedness derivation. The only case that
doesn’t follow directly from induction and the fact that Δ is unchanged between the two related
environments is WF-Ref.

WF-Ref
(Γ (𝑟) = ∅ ∨ ∃𝜔𝑝 ∈ Γ (𝑟) . ∃𝜏xi𝑝 . Δ; Γ ⊢𝜔 𝑝 : 𝜏xi𝑝 . 𝜏xi occurs in 𝜏xi𝑝)

Σ; Δ; Γ ⊢ 𝜏xi

Σ; Δ; Γ ⊢ &𝑟 𝜔 𝜏xi

Firstly we apply our induction hypothesis to get that Σ; Δ; Γ′ ⊢ 𝜏xi𝑝 . What’s left to show is the loan
set condition on 𝑟 . If Γ′(𝑟) = ∅, then we’re done. Otherwise, we just need that the type computation
still holds, which we get from Lemma E.11. We know the places in these place expressions all have
the same type in Γ and Γ′ because between these two contexts the only changes allowed that could
cause problems here are dropping one of these places, but then Γ′ would not be well formed since
there would be an invalid loan.

□

Lemma E.14 (Related Environments remain well formed). If Σ; Δ ⊢ Γ ≲ Γ′ and ⊢ Σ; Δ; Γ ♮ F𝑐
then ⊢ Σ; Δ; Γ′ ♮ F𝑐 .

Oxide: The Essence of Rust 1:51

Proof. From the well formedness of Γ ♮ F𝑐 , we know that the places and disjointness conditions
both hold. By Lemma E.13, noting that Σ; Δ ⊢ Γ ♮ F𝑐 ≲ Γ′ ♮ F𝑐 is immediate, we know that the
types remain well formed in the environment. We also have the well formedness of Γ′ as a premise
of the related environments judgement. All that’s left to show is the loan set condition. But for this
all we have to show is that each place computes to some type, which follows from Lemma E.11. We
know the types of the places in each place expression remain the same because the only allowed
changes between Γ and Γ′ are that places can be dropped and loan sets emptied, but if one such
place was dropped, then Γ′ would have not been well formed. □

Lemma E.15 (Related Input Environments Produce Similar Output Environments). If:

• Σ; Δ; Γ1 ⊢ 𝑒1 : 𝜏1 ⇒ Γ2
• Σ; Δ; Γ1 ⊢ 𝑒2 : 𝜏2 ⇒ Γ3
• Σ; Δ ⊢ Γ1 ≲ Γ′1
• Σ; Δ; Γ′1 ⊢ 𝑒1 : 𝜏1 ⇒ Γ′2
• Σ; Δ; Γ′1 ⊢ 𝑒2 : 𝜏2 ⇒ Γ′3
• Σ; Δ ⊢ Γ2 ≲ Γ′2
• Σ; Δ ⊢ Γ3 ≲ Γ′3
• ∀𝑥 ∈ dom(Γ2), Γ2 (𝑥) = Γ3 (𝑥) and Γ′2 (𝑥) = Γ′3 (𝑥)
• ∀𝑟 that occur in 𝑒1 or 𝑒2 or 𝜏1 or 𝜏2, Γ1 (𝑟) = Γ′1 (𝑟)

then ∀𝑟 ∈ dom(Γ1), if Γ′2 (𝑟) = ∅ and Γ′3 (𝑟) ≠ ∅, then Γ2 (𝑟) = ∅, and if Γ′3 (𝑟) = ∅ and Γ′2 (𝑟) ≠ ∅,
then Γ3 (𝑟) = ∅.

Proof. The proofs for both statements in the conclusion follow identically, so without loss of
generality it suffices to show that if Γ′2 (𝑟) = ∅ and Γ′3 (𝑟) ≠ ∅, then Γ2 (𝑟) = ∅. Note there are two
cases to consider: that the loan set was empty all along, or that the loan set was at some point non
empty, but then got garbage collected.
First, at some point between Γ′1 and Γ′2 , 𝑟 mapped to a non empty set of loans but then was

garbage collected. In this case, Γ′2 must not contain any references that contain 𝑟 , since otherwise it
would have been invalid to garbage collect 𝑟 . But then since Γ′2 and Γ′3 agree on types, it must be
the case that it was also garbage collected in Γ′3 , which is a contradiction with the fact that Γ′3 (𝑟) is
non empty, so this case is impossible.
Second, at each step of the derivation between Γ′1 and Γ′2 , 𝑟 mapped to empty. If Γ1 (𝑟) also was

empty, then this means Γ2 (𝑟) is also empty, and we’re done. Otherwise, 𝑟 was garbage collected
between Γ1 and Γ′1 . But then 𝑟 must be free in 𝑒2 for loans to have been added between Γ′1 and Γ′3 ,
which means the loan set could not have been emptied between Γ1 and Γ′1 , which is a contradiction.

□

Lemma E.16 (Outlives Preserves Related Environments). If Δ; Γ ⊢ 𝜌1 :> 𝜌2 ⇒ Γ𝑜 , and
Σ; Δ ⊢ Γ ≲ Γ′ and ⊢ Σ; Δ; Γ𝑜 and Γ(𝜌1) = Γ′(𝜌1) and Γ(𝜌2) = Γ′(𝜌2), then Δ; Γ′ ⊢ 𝜌1 :> 𝜌2 ⇒ Γ′𝑜 ,
and Σ; Δ ⊢ Γ𝑜 ≲ Γ′𝑜 . and Γ𝑜 (𝜌1) = Γ′𝑜 (𝜌1) and Γ𝑜 (𝜌2) = Γ′𝑜 (𝜌2)

Proof. Proceed by induction on the outlives derivation. OL-ReflProv, OL-TransProv, OL-
AbsProvLocalProv, and OL-AbstractProvenances are immediate.

OL-LocalProvAbsProv follows from additionally applying Lemma E.11. The condition on the
place having the same type follows from the fact that 𝑝 is a loan and Γ′(𝑟) is not emptied, so we
could not have dropped the place.

This leaves one case: OL-LocalProvenances

1:52 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

OL-LocalProvenances
∀𝜋 : &𝑟1 𝜔 𝜏 ∈ Γ. �𝑟 ′. 𝜔 ∗𝜋 ∈ Γ (𝑟 ′)

𝑟1 occurs before 𝑟2 in Γ

Δ; Γ ⊢ 𝑟1 :> 𝑟2 ⇒ Γ [𝑟2 ↦→ { Γ (𝑟1) ∪ Γ (𝑟2) }]

Since Γ′(𝑟1) = Γ(𝑟1) and Γ′(𝑟2) = Γ(𝑟2), Γ′(𝑟1)∪Γ′(𝑟2) = Γ(𝑟1)∪Γ′(𝑟2). The rest of the conditions
are immediate: the equality on 𝑟1 and 𝑟2’s loan sets, and well formedness. □

Lemma E.17 (Subtyping Preserves Related Environments). If Δ; Γ ⊢ 𝜏 si1 ≲ 𝜏 si2 ⇒ Γ𝑜 , and
Σ; Δ ⊢ Γ ≲ Γ′ and ⊢ Σ; Δ; Γ𝑜 and ∀𝑟 that occur in 𝜏 si1 or 𝜏 si2 , Γ(𝑟) = Γ′(𝑟), then Δ; Γ′ ⊢ 𝜏 si1 ≲ 𝜏 si2 ⇒ Γ′𝑜 ,
and Σ; Δ ⊢ Γ𝑜 ≲ Γ′𝑜 , and ∀𝑟 that occur in 𝜏 si1 or 𝜏 si2 , Γ𝑜 (𝑟) = Γ′𝑜 (𝑟).

Proof. Proceed by induction on the Subtyping derivation. The only interesting cases are S-
SharedRef and S-UniqeRef, both of which proceed by Lemma E.16 in addition to applying the
induction hypothesis. □

Lemma E.18 (Expression Typing Preserved in Related Environments). Let 𝑒 be a surface
expression as defined on page 1. If Σ; Δ; Γ ♮ F ⊢ 𝑒 : 𝜏 ⇒ Γ𝑜 ♮ F𝑜 and Σ; Δ ⊢ Γ ♮ F ≲ Γ′ ♮ F and

free-vars(𝑒) = 𝑥 𝑓 ⊆ dom(F)|𝑥 and ∀𝑟 ∈ free-provs(𝑒). 𝑟 ∈ dom(F), and ∀𝑟 that occur a type in

F (𝑥 𝑓), Γ(𝑟) = Γ′(𝑟) then Σ; Δ; Γ′ ♮ F ⊢ 𝑒 : 𝜏 ⇒ Γ′𝑜 ♮ F𝑜 and Σ; Δ ⊢ Γ𝑜 ♮ F𝑜 ≲ Γ′𝑜 ♮ F𝑜 and ∀𝑟 that
occur a type in F (𝑥 𝑓), Γ𝑜 (𝑟) = Γ′𝑜 (𝑟).

Proof. Proceed by induction on the typing derivation for 𝑒 . In the cases of T-Abort, T-Function,
T-Unit, T-u32, T-True, and T-False, the results are immediate.

In the cases of T-LetProv, T-While, T-ForArray, T-ForSlice, T-Closure, T-Tuple, and T-Array, they
all follow immediately from induction hypotheses.

For each of the following cases, the convention is that the statement in the box is our assumption,
and we want to prove the same statement with Γ′ replaced for each Γ.

T-Branch
Σ; Δ; Γ ♮ F ⊢ 𝑒1 : bool ⇒ Γ1 ♮ F1 Σ; Δ; Γ1 ♮ F1 ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 ♮ F2

Σ; Δ; Γ1 ♮ F1 ⊢ 𝑒3 : 𝜏si3 ⇒ Γ3 ♮ F3 𝜏si = 𝜏si2 ∨ 𝜏si = 𝜏si3
Δ; Γ2 ♮ F2 ⊢ 𝜏si2 ≲ 𝜏si ⇒ Γ2𝑠 ♮ F2𝑠 Δ; Γ3 ♮ F3 ⊢ 𝜏si3 ≲ 𝜏si ⇒ Γ3𝑠 ♮ F3𝑠 Γ2𝑠 ♮ F2𝑠 ⋓ Γ3𝑠 ♮ F3𝑠 = Γ𝑜 ♮ F𝑜

Σ; Δ; Γ ♮ F ⊢ if 𝑒1 { 𝑒2 } else { 𝑒3 } : 𝜏si ⇒ Γ𝑜 ♮ F𝑜

By our induction hypothesis we get that Σ; Δ; Γ′ ♮ F ⊢ 𝑒1 : bool ⇒ Γ′1 ♮ F1, and Σ; Δ; Γ′1 ♮ F1 ⊢
𝑒2 : bool ⇒ Γ′2 ♮ F2, and Σ; Δ; Γ′1 ♮ F1 ⊢ 𝑒3 : bool ⇒ Γ′3 ♮ F3 with Σ; Δ ⊢ Γ2 ♮ F2 ≲ Γ′2 ♮ F2 and
Σ; Δ ⊢ Γ3 ♮ F3 ≲ Γ′3 ♮ F3.
Next we want to show that Δ; Γ′2 ♮ F2 ⊢ + ≲ 𝜏si2 ⇒ 𝜏siΓ′2𝑠 ♮ F2𝑠 , Σ; Δ ⊢ Γ2𝑠 ♮ F2𝑠 ≲ Γ′2𝑠 ♮ F2𝑠 ,

Δ; Γ′3 ♮ F3 ⊢ + ≲ 𝜏si3 ⇒ 𝜏siΓ′3𝑠 ♮ F3𝑠 , and Σ; Δ ⊢ Γ3𝑠 ♮ F3𝑠 ≲ Γ′3𝑠 ♮ F3𝑠 , which all follow from applying
Lemma E.17. To do this lemma application, we just need to show that for all 𝑟 in 𝜏si1 , 𝜏

si
2 and 𝜏si,

Γ(𝑟) = Γ′(𝑟) which follows from the premise.
Finally, we need to show that Σ; Δ ⊢ Γ𝑜 ♮ F𝑜 ≲ Γ′𝑜 ♮ F𝑜 . The well formedness condition on Γ′𝑜

follows immediately since all types are the same as in Γ′2 and Γ′3 and the loan sets are just unioned,
meaning reference types remain valid and we can compute types for all loans.
The equal or empty condition follows from the fact that Γ′2 and Γ′3 both agree on types by

Lemma E.15, which means they drop exactly the same entries. For any provenances emptied, either
the same provenances are emptied, or the provenance was emptied in the corresponding smaller
context Γ2 or Γ3. Otherwise the loan sets are untouched.

Oxide: The Essence of Rust 1:53

Finally, both of these are preserved when adding on the same frame, so we’re done.

T-Let
Σ; Δ; Γ ♮ F ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1 ♮ F1 Δ; Γ1 ♮ F1 ⊢ 𝜏si1 ≲ 𝜏si𝑎 ⇒ Γ1𝑠 ♮ F1𝑠

Σ; Δ; gc-loans(Γ1𝑠 ♮ F1𝑠 , 𝑥 : 𝜏si𝑎) ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 ♮ F2 , 𝑥 : 𝜏sd

Σ; Δ; Γ ♮ F ⊢ let 𝑥 : 𝜏si𝑎 = 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2 ♮ F2

Firstly, we apply our induction hypothesis to get that 𝑒1 is well typed with input environment
Γ′ ♮ F and output environment Γ′1 ♮ F1 with Σ; Δ ⊢ Γ1 ♮ F1 ≲ Γ′1 ♮ F1. Then, we apply Lemma E.17
to get Σ; Δ ⊢ Γ1𝑠 ♮ F1𝑠 ≲ Γ′1𝑠 ♮ F1𝑠 . In order to apply this lemma we need to know that for any 𝑟

that occur in 𝜏si1 or 𝜏si𝑎 , Γ1 ♮ F1 (𝑟) = Γ′1 ♮ F1 (𝑟), which we have as a conclusion from the previous
application of the induction hypothesis.

To apply our induction hypothesis on 𝑒2 and finish the case, we need that
Σ; Δ ⊢ gc-loans(Γ1𝑠 ♮ F1𝑠 , 𝑥 : 𝜏si𝑎) ≲ gc-loans(Γ′1𝑠 ♮ F1𝑠 , 𝑥 : 𝜏si𝑎). But this is immediate by definition
since gcloans can only empty loan sets for provenances for which there are no types that contain
them, which is allowed by S-Env.
Our final obligation to apply the induction hypothesis is that for any 𝑟 that occurs in a type in

F1𝑠 but is not in F1𝑠 , we need that gc-loans(Γ1𝑠 ♮ F1𝑠) (𝑟) = gc-loans(Γ′1𝑠 ♮ F1𝑠) (𝑟). We already have
that Γ1𝑠 ♮ F1𝑠 (𝑟) = Γ′1𝑠 ♮ F1𝑠 (𝑟), so we just need to know that ∃𝜋 : 𝜏 ∈ Γ1𝑠 , where 𝑟 occurs in 𝜏 , and
Γ1𝑠 ♮ F1𝑠 (𝜋) = Γ1𝑠 ♮ F ′

1𝑠 (𝜋). But we said that 𝑟 is contained in a type in F1𝑠 , so the place for that type
is one such place, so we cannot empty the loan set.

T-Seq
Σ; Δ; Γ ♮ F ⊢ 𝑒1 : 𝜏si1 ⇒ Γ ♮ F1

Σ; Δ; gc-loans(Γ1 ♮ F1) ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 ♮ F2
Σ; Δ; Γ ♮ F ⊢ 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2 ♮ F2

Firstly, we apply our induction hypothesis to get that 𝑒1 is well typed with input environment
Γ′ ♮ F and output environment Γ′1 ♮ F1, with Σ; Δ ⊢ Γ1 ♮ F1 ≲ Γ′1 ♮ F1. We need to know that
Σ; Δ ⊢ gc-loans(Γ1 ♮ F1) ≲ gc-loans(Γ′1 ♮ F1) before we can apply our induction hypothesis to finish
the proof. But this fact is trivial by the definitions, since gc-loans can only empty provenances that
are not in initialized types in the context, which is allowed in S-Env.
Our final obligation to apply the induction hypothesis is that for any 𝑟 that occurs in a type

in F1 but is not in F1, we need that gc-loans(Γ1 ♮ F1) (𝑟) = gc-loans(Γ′1 ♮ F1) (𝑟). We already have
that Γ1 ♮ F1 (𝑟) = Γ′1 ♮ F1 (𝑟), so we just need to know that ∃𝜋 : 𝜏 ∈ Γ1, where 𝑟 occurs in 𝜏 , and
Γ1 ♮ F1 (𝜋) = Γ′1 ♮ F1 (𝜋). But since 𝑜𝑥𝑐𝑝𝑟𝑜𝑣 occurs in a type in F1, the place that maps to that type
is such a place.

T-Drop
Γ (𝜋) = 𝜏si𝜋 Σ; Δ; (Γ ♮ F) [𝜋 ↦→ 𝜏si

†
𝜋] ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑜 ♮ F𝑜

Σ; Δ; Γ ♮ F ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑜 ♮ F𝑜

In order to apply our induction hypothesis and finish the case, we only need to show that
Σ; Δ ⊢ (Γ ♮ F)[𝜋 ↦→ 𝜏si

†
𝜋] ≲ (Γ′ ♮ F)[𝜋 ↦→ 𝜏si

†
𝜋], which is immediate by the definition of related

contexts. Note that (Γ′ ♮ F)[𝜋 ↦→ 𝜏si
†

𝜋] is well formed because (Γ ♮ F)[𝜋 ↦→ 𝜏si
†

𝜋] is well formed.

1:54 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

There cannot be any loans to 𝜋 because in the (Γ′ ♮ F)[𝜋 ↦→ 𝜏si
†

𝜋] because those loans would be
there in (Γ ♮ F)[𝜋 ↦→ 𝜏si

†
𝜋].

T-App
Σ; Δ; Γ ♮ F ⊢ Φ Δ; Γ ♮ F ⊢ 𝜌 Σ; Δ; Γ ♮ F ⊢ 𝜏si

Σ; Δ; Γ ♮ F ⊢ 𝑒𝑓 : ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛) Φ𝑐→ 𝜏si
𝑓
where 𝜚1 : 𝜚2 ⇒ Γ0 ♮ F0

∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1 ♮ F𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 [Φ/𝜑] [𝜌/𝜚] [𝜏si/𝛼] ⇒ Γ𝑖 ♮ F𝑖
Δ; Γ𝑛 ♮ F𝑛 ⊢ 𝜚2 [𝜌/𝜚] :> 𝜚1 [𝜌/𝜚] ⇒ Γ𝑏 ♮ F𝑏

Σ; Δ; Γ ♮ F ⊢ 𝑒𝑓 ::<Φ , 𝜌 , 𝜏si> (𝑒1 , . . . , 𝑒𝑛) : 𝜏si
𝑓
[Φ/𝜑] [𝜌/𝜚] [𝜏si/𝛼] ⇒ Γ𝑏 ♮ F𝑏

In the case of T-App, we firstly must prove the well formedness properties:

• Σ; Δ; Γ′ ♮ F ⊢ Φ. Since Δ is unchanged, WF-Env is the only interesting case.

WF-Env
Σ; Δ ⊢ Γ ♮ F ♮ F𝑐
Σ; Δ; Γ ♮ F ⊢ F𝑐

Let Φ = F𝑒 . We want to show that ⊢ Σ; Δ; Γ′ ♮ F ♮ F𝑐 given ⊢ Σ; Δ; Γ ♮ F ♮ F𝑐 , which is
immediate from Lemma E.14.

• Δ; Γ′ ♮ F ⊢ 𝜌 , which is immediate from the premises since related loan environments have
the same domains and Δ is the same.

• Σ; Δ; Γ′ ♮ F ⊢ 𝜏si, which is immediate from Lemma E.13. We just need that for the prove-
nances that occur in the type, their loan sets are unchanged, but we get that from the premise,
because the function argument is either: locally defined, in which case it can only use and
produce types accessible in the context; an argument, in which case its arguments are also
part of the argument type; or a global function, in which case these types do not contain any
non abstract provenances which are replaced with concrete provenances all in F .

For the rest of the application case, we can apply our induction hypothesis on the function and
the arguments, additionally applying the substitution lemma, Lemma E.10, where needed. The last
part about outlives follows from Lemma E.16, where we have the condition on the loan sets from
the conclusion of the application of the induction hypothesis.
In the cases of T-Move, T-Copy, T-Borrow, T-BorrowIndex, T-BorrowSlice, IndexCopy, they all

follow from the induction hypothesis and additionally applying Lemma E.12 and Lemma E.11. Note
we get the place having the same type requirement from the fact that the place must be in F since
it is a free variable.
The remaining cases of T-Assign and T-AssignDeref proceed similarly. Firstly, we apply the

induction hypothesis on the expression, then Lemma E.12 and Lemma E.11, and finally we get well
formedness and relatedness on the output environment by applying Lemma E.17. Note we get the
place having the same type requirement for type computation from the fact that the place must be
in F since it is a free variable.

□

Lemma E.19 (Referent Well Formedness Preserved in Related Environments). If Σ; Δ ⊢
Γ ≲ Γ′ and Σ; Γ ⊢ R□ [𝜋] : 𝜏xi and Γ(𝜋) = Γ′(𝜋), then Σ; Γ′ ⊢ R□ [𝜋] : 𝜏xi.

Oxide: The Essence of Rust 1:55

Proof. Proceed by induction on the referent validity derivation. The only case that doesn’t
follow immediately from premises and the induction hypothesis in WF-RefId, which follows from
the equal types premise. □

Lemma E.20 (Value Typing Preserved in Related Environments). If Σ; • ⊢ Γ ≲ Γ′, then:

(1) If Σ; •; Γ ⊢ 𝑣 : Γ(𝑥) ⇒ Γ, then Σ; •; Γ′ ⊢ 𝑣 : Γ′(𝑥) ⇒ Γ′.
(2) If Σ; Γ ⊢ 𝜍 : F𝑐 , then Σ; Γ′ ⊢ 𝜍 : F𝑐 .
Proof. Proceed by simultaneous induction on the typing derivation and the stack frame well

formedness.
(1) Since we know the expression is already a value, we restrict ourselves only to those cases

that type values: T-Unit, T-u32, T-True, T-False, T-Tuple, T-Array, T-Dead, T-Pointer, and
T-ClosureValue.
For T-Unit, T-u32, T-Dead, T-True, and T-False, this holds trivially. For T-Tuple, and T-Array,
this holds directly by repeated application of our induction hypothesis. This leaves us with
four cases.

T-ClosureValue
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 = dom(F𝑐) |𝑥 𝑟 = free-provs(Γ (𝑥𝑓)) , free-provs(𝑒) = dom(F𝑐) |𝑟

Σ; Γ ⊢ 𝜍𝑐 : F𝑐 Σ; Δ; Γ ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ ⊢ ⟨𝜍𝑐 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩ : (𝜏si1 , . . . , 𝜏si𝑛) F𝑐→ 𝜏si𝑟 ⇒ Γ

For the T-ClosureValue case, firstly we want to show Σ; Γ′ ⊢ 𝜍 : F𝑐 . This follows immediatedly
from (2).
Then to finish the closure case, it suffices to show
Σ; •; Γ′ ♮ F𝑐 ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′𝑜 ♮ F , which follows immediately from Lemma E.18.

T-Pointer
Σ; Γ ⊢ R□ [𝜋] : 𝜏xi 𝜔𝜋 ∈ Γ (𝑟)

Σ; Δ; Γ ⊢ ptr R□ [𝜋] : &𝑟 𝜔 𝜏xi ⇒ Γ

If 𝑥 was dropped, then Γ′(𝑥) = Γ(𝑥)†. Then the proof follows immediately from T-Dead.
If 𝑥 was not dropped, then Γ(𝑥) = Γ′(𝑥). All that is left to show is that that the referent
remains well formed, and the loan 𝜔𝜋 is in Γ′(𝑟). The first condition follows from Lemma E.19.
The second condition is immediate because the only potential changes allowed in the related
environment to loan sets is emptying the loan sets of provenances if there’s no references with
the provenance in their type, and this particular reference is a reference with the provenance,
so emptying the loan set is ruled out.

(2) The proof amounts to showing that ∀𝑥 ∈ dom(F𝑐), Σ; •; Γ ♮ F𝑐 ⊢ 𝜍 (𝑥) : F𝑐 (𝑥) ⇒ Γ ♮ F𝑐
implies Σ; •; Γ′ ♮ F𝑐 ⊢ 𝜍 (𝑥) : F𝑐 (𝑥) ⇒ Γ′ ♮ F𝑐 . This proceeds directly from applying (1),
since Σ; • ⊢ Γ ≲ Γ′ implies Σ; • ⊢ Γ ♮ F𝑐 ≲ Γ′ ♮ F𝑐 .

□

Lemma E.21 (Value Typing Fixed on Output Environments). If Σ; Δ; Γ ⊢ 𝑣 : 𝜏 ⇒ Γ′, then
Σ; Δ; Γ′ ⊢ 𝑣 : 𝜏 ⇒ Γ′.

Proof. Immediate by induction on the typing derivation. The only non immediate case is T-
Pointer, where we also need to apply Lemma E.19. □

1:56 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Lemma E.22 (Stack Validity is Invariant Under Loan Context Update). If Σ ⊢ 𝜎 : Γ and

⊢ Σ; Δ; Γ [𝑟 ↦→ { ℓ }] and Γ(𝑟) = ∅ then Σ ⊢ 𝜎 : Γ [𝑟 ↦→ { ℓ }].

Proof. We proceed by induction on the stack validity. There are two cases, WF-StackEmpty, and
WF-StackFrame. WF-StackEmpty is impossible, since we already know that 𝑟 is in Γ.

WF-StackFrame
Σ ⊢ 𝜎 : Γ dom(𝜍) = dom(F) |𝑥

∀𝑥 ∈ dom(𝜍) . Σ; •; Γ ♮ F ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F) (𝑥) ⇒ Γ ♮ F

Σ ⊢ 𝜎 ♮ 𝜍 : Γ ♮ F

WF-StackEmpty

Σ ⊢ • : •

In the case of WF-StackFrame, we mostly just have to show that the values remain well typed in
the updated environment. For the remaining Γ′, if 𝑟 ∈ Γ′, then we apply the induction hypothesis,
otherwise we just apply the derivation from the premise.

To show that the values in the stack are still well typed in Γ [𝑟 ↦→ {ℓ}], we proceed by induction
on the typing derivation with Γ. The only interesting case is T-ClosureValue.

T-ClosureValue
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 = dom(F𝑐) |𝑥 𝑟 = free-provs(Γ (𝑥𝑓)) , free-provs(𝑒) = dom(F𝑐) |𝑟

Σ; Γ ⊢ 𝜍𝑐 : F𝑐 Σ; Δ; Γ ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ ⊢ ⟨𝜍𝑐 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩ : (𝜏si1 , . . . , 𝜏si𝑛) F𝑐→ 𝜏si𝑟 ⇒ Γ

For this case, we proceed by induction on the expression typing derivation. The interesting
cases are all of the cases which use ownership safety: T-Move, T-Copy, T-Borrow, T-BorrowIndex,
T-BorrowSlice, T-IndexCopy, and T-AssignDeref. What we want to know is that that ownership
safety is preserved given the addition of these loans. In all of these cases cases, this is immediate
because these places are by definition disjoint from the ones outside of the closure in the loan
set. □

Lemma E.23 (Stack Validity is Preserved in Related Environments). If Σ ⊢ 𝜎 : Γ and

Σ; • ⊢ Γ ≲ Γ′, then Σ ⊢ 𝜎 : Γ′.

Proof. We proceed by induction over the well typedness of the store.

WF-StackFrame
Σ ⊢ 𝜎 : Γ dom(𝜍) = dom(F) |𝑥

∀𝑥 ∈ dom(𝜍) . Σ; •; Γ ♮ F ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F) (𝑥) ⇒ Γ ♮ F

Σ ⊢ 𝜎 ♮ 𝜍 : Γ ♮ F

WF-StackEmpty

Σ ⊢ • : •

The interesting case is when the stack is non empty. Then we have that Σ ⊢ 𝜎 : Γ′ and want
to show that Σ ⊢ 𝜎 ♮ 𝜍 : Γ′ ♮ F . The requirement on the domain is immediate since related
environments have the same domains. What’s left to show is that the values in the store remain
well typed under the new environment. This follows from repeated applications of Lemma E.20 □

Lemma E.24 (Stack Validity is Preserved When Popping A Stack Frame). If Σ ⊢ 𝜎 ♮ 𝜍 : Γ ♮ F ,

then Σ ⊢ 𝜎 : Γ.

Proof. Immediate by inversion on WF-StackFrame which gives us Σ ⊢ 𝜎 : Γ. □

Oxide: The Essence of Rust 1:57

Lemma E.25 (Stack Validity is Preserved under Well-Typed Extensions). If Σ ⊢ 𝜎 : Γ and

Σ; Δ; Γ ⊢ 𝑣 : 𝜏 si ⇒ Γ, then Σ ⊢ 𝜎 , 𝑥 ↦→ 𝑣 : Γ , 𝑥 : 𝜏 si.

Proof. This proof follows directly from the definition of WF-StackFrame.

WF-StackFrame
Σ ⊢ 𝜎 : Γ dom(𝜍) = dom(F) |𝑥

∀𝑥 ∈ dom(𝜍) . Σ; •; Γ ♮ F ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F) (𝑥) ⇒ Γ ♮ F

Σ ⊢ 𝜎 ♮ 𝜍 : Γ ♮ F

In particular, inversion of WF-StackFrame on Σ ⊢ 𝜎 : Γ gives us well-formedness for the remainder
of the stack, dom(𝜍) = dom(F)|𝑥 and ∀𝑥 ∈ dom(𝜍) . Σ; •; Γ ♮ F ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F)(𝑥) ⇒
Γ ♮ F . We can then see that the well-formedness of the remainder of the stack is unaffected, and
that the domains when extended with 𝑥 remain equal. The last obligation is to show that the 𝑣 is
well-typed in the current stack typing, but we already have that from our premise. Thus, we can
apply WF-StackFrame with the extended stack to get Σ ⊢ 𝜎 , 𝑥 ↦→ 𝑣 : Γ , 𝑥 : 𝜏si. □

Lemma E.26 (Values Are Well-Typed At Super-Types). If Σ; Δ; Γ ⊢ 𝑣 : 𝜏 si ⇒ Γ𝑖 and
Δ; Γ𝑖 ⊢ + ≲ 𝜏 si ⇒ 𝜏 si ′Γ′, then Σ; Δ; Γ′ ⊢ 𝑣 : 𝜏 si ′ ⇒ Γ′.

Proof. We proceed by induction on the value typing relation.
In the case of T-Tuple, we need to apply the induction hypothesis for each entry which has a

changed type, and Lemma E.7 for each entry which does not.
In the case of T-Array, we just apply the induction hypothesis to each entry.

T-Pointer
Σ; Γ ⊢ R□ [𝜋] : 𝜏xi 𝜔𝜋 ∈ Γ (𝑟)

Σ; Δ; Γ ⊢ ptr R□ [𝜋] : &𝑟 𝜔 𝜏xi ⇒ Γ

For the T-Pointer case, we proceed by induction on the subtyping judgement. The only interesting
cases are for reference types. From there, we proceed by induction on the outlives relation, for
which the only interesting case is OL-LocalProvenances.

OL-LocalProvenances
∀𝜋 : &𝑟1 𝜔 𝜏 ∈ Γ. �𝑟 ′. 𝜔 ∗𝜋 ∈ Γ (𝑟 ′)

𝑟1 occurs before 𝑟2 in Γ

Δ; Γ ⊢ 𝑟1 :> 𝑟2 ⇒ Γ [𝑟2 ↦→ { Γ (𝑟1) ∪ Γ (𝑟2) }]

The T-Pointer case is immediate. We know that the referent type is preserved since we do not
change any types in the context, and we know the loan is preserved since loan sets only grow.

In all other cases, we know the types cannot change, which means Γ = Γ′, so we are done. □

Lemma E.27 (Stack Validity is Preserved by Assignment). If Σ ⊢ 𝜎 : Γ and Σ; •; Γ ⊢ 𝑣 :
𝜏 si ⇒ Γ1 and •; Γ1 ⊢uniq 𝑝 : 𝜏 sx and Δ; Γ1 ⊢ 𝜏 si ≲ 𝜏 sx ⇒ Γ′, 𝜎 ⊢ 𝑝 ⇓ V , and either 𝜏 sx = 𝜏 sd or

•; Γ1 ⊢uniq 𝑝 ⇒ { ℓ } and 𝑝 = 𝑝□ [𝑥], then:
(1) Σ ⊢ 𝜎 [𝑥 ↦→ V[𝑣]] : Γ′[𝜋 ↦→ 𝜏 si] ▷− 𝑝 if 𝑝 = 𝜋 , and

(2) Σ ⊢ 𝜎 [𝑥 ↦→ V[𝑣]] : Γ′ ▷− 𝑝 if 𝜏 sx = 𝜏 si𝑜 .

1:58 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Proof. First, note that by applying Lemma E.21 we get Σ; •; Γ1 ⊢ 𝑣 : 𝜏si ⇒ Γ1 and by applying
Lemma E.23, we get that Σ ⊢ 𝜎 : Γ1.
Next, note that Σ ⊢ 𝜎 : Γ′ follows from applying Lemma E.8. Then we get Σ; •; Γ′ ⊢ V[𝑣] :

Γ′(𝑥) ⇒ Γ′ by firstly applying Lemma E.26 to get Σ; •; Γ′ ⊢ 𝑣 : 𝜏sx ⇒ Γ′, and then noting by a
quick induction that 𝜎 ⊢ 𝑝 ⇓ V and Σ ⊢ 𝜎 : Γ′ means that all of the other values inV have their
corresponding types, so plugging in 𝑣 for the hole produces a well typed value. Therefore, we get
that Σ ⊢ 𝜎 [𝑥 ↦→ V[𝑣]] : Γ′.

Next, there are two cases, depending on whether 𝑝 = 𝜋 or not. If not, then we just need to show
that Σ ⊢ 𝜎 [𝑥 ↦→ V[𝑣]] : Γ′ ▷− 𝑝 . We know that 𝜏sx = 𝜏si𝑜 , so we just need to show all values in the
store remain well typed, for which the only interesting case is pointers. For pointers, we need to
show that their loan is preserved by this operation, but this is immediate: referants cannot contain
dereferences, so the loan that the typing derivation was using could not have been a removed loan.

If 𝑝 = 𝜋 , the reasoning proceeds similarly, but we instead wish to prove that Σ ⊢ 𝜎 [𝑥 ↦→ V[𝑣]] :
Γ′[𝜋 ↦→ 𝜏si] ▷− 𝑝 . If 𝜏sx = 𝜏sd, then Γ′ ▷− 𝜋 = Γ′ because any such loans that would be removed
would be invalid since they would point to an uninitialized type. Otherwise, the reasoning proceeds
exactly as above in the 𝑝 case. □

Lemma E.28 (Garbage-Collecting Loans Preserves Stack Validity). If Σ ⊢ 𝜎 : Γ, then
Σ ⊢ 𝜎 : gc-loans(Γ).

Proof. Consider the definitions of gc-loans(Γ) and R-Env.

R-Env
⊢ Σ; Δ; Γ ⊢ Σ; Δ; Γ′ dom(Γ) = dom(Γ′)
∀𝑥 : 𝜏 ∈ Γ′. ∀𝑟 that occurs in 𝜏 . Γ(𝑟) = Γ′(𝑟)

∀𝑟 ∈ dom(Γ). Γ(𝑟) = Γ′(𝑟) ∨ Γ′(𝑟) = ∅
∀𝜋 ∈ dom(Γ). Γ′(𝜋) = Γ(𝜋) ∨ Γ′(𝜋) = Γ(𝜋)†

Σ; Δ ⊢ Γ ≲ Γ′

We know that gc-loans(Γ) can set a provenance’s loan set to ∅ only if that provenance does not
occur in the type of any bindings in Γ. This corresponds exactly to the definition of R-Env which
says that all provenances which do occur in the type of a binding in Γ must have the same loan set,
and otherwise they are also permitted to be ∅. Thus, we have directly that Σ; Δ ⊢ Γ ≲ gc-loans(Γ).

We can then apply Lemma E.23 to conclude Σ ⊢ 𝜎 : gc-loans(Γ). □

Lemma E.29 (Function Definitions Are Self-Contained).
If ⊢ Σ; •; Γ and Σ(𝑓) = fn 𝑓 <𝜑 , 𝜚 , 𝛼>(𝑥1 : 𝜏 si1 , . . . , 𝑥𝑛 : 𝜏 si𝑛) → 𝜏 si𝑟 where 𝜚1 : 𝜚2 { 𝑒 }, then
Σ; 𝜑 : FRM , 𝜚 : PRV , 𝜚1 :> 𝜚2 , 𝛼 :★; Γ ♮ 𝑥1 : 𝜏 si1 , . . . , 𝑥𝑛 : 𝜏 si𝑛 ⊢ framed 𝑒 : 𝜏 si

𝑓
⇒ Γ.

Proof. Begin by noting that WF-FunctionDefinition gives us that
Σ; 𝜑 : FRM , 𝜚 : PRV , 𝜚1 :> 𝜚2 , 𝛼 :★; • ♮ 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ⊢ 𝑒 : 𝜏si

𝑓
⇒ Γ′. We also have by

inspection of the typing rules that Γ′ = • ♮ F ′ for some frame F ′. Then by T-Framed, it suffices to
show that Σ; 𝜑 : FRM , 𝜚 : PRV , 𝜚1 :> 𝜚2 , 𝛼 :★; Γ ♮ 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ⊢ 𝑒 : 𝜏si

𝑓
⇒ Γ ♮ F ′. But

note that this is immediate. The typing derivation with • and the current frame means that there’s
absolutely no reliance on context outside 𝑥1, . . . 𝑥𝑛 , and these places are necessarily completely
disjoint from places in Γ since any provenances in their types must be abstract. □

Oxide: The Essence of Rust 1:59

E.2 Progress
Lemma E.30 (Progress). If Σ; •; Γ ⊢ 𝑒 : 𝜏 si ⇒ Γ′ and Σ ⊢ 𝜎 : Γ , then either 𝑒 is a value, 𝑒 is

an abort! (. . .) , or ∃ 𝜎 ′, 𝑒 ′. Σ ⊢ (𝜎 ; 𝑒) → (𝜎 ′; 𝑒 ′).

Proof. We proceed by induction on the derivation Σ; •; Γ ⊢ 𝑒 : 𝜏 ⇒ Γ′ .

Case T-Move:
From premise: We want to step with:

T-Move
Δ; Γ ⊢uniq 𝜋 ⇒ { uniq𝜋 }

Γ (𝜋) = 𝜏si noncopyableΣ 𝜏
si

Σ; Δ; Γ ⊢ 𝜋 : 𝜏si ⇒ Γ [𝜋 ↦→ 𝜏si
†]

E-Move
𝜎 ⊢ 𝜋 ⇓ _ ↦→ 𝑣

Σ ⊢ (𝜎 ; 𝜋) → (𝜎 [𝜋 ↦→ dead]; 𝑣)

Applying Lemma E.3 to Δ; Γ ⊢uniq 𝜋 ⇒ { uniq𝜋 }, Δ; Γ ⊢uniq 𝜋 : 𝜏si (from Γ(𝜋) = 𝜏si by TC-Place),
and Σ ⊢ 𝜎 : Γ to conclude that 𝜎 ⊢ 𝜋 ⇓ _ ↦→ 𝑣 . Thus, we can step with E-Move.

Case T-Copy:
From premise: We want to step with:

T-Copy
Δ; Γ ⊢shrd 𝑝 ⇒ { ℓ }

Δ; Γ ⊢shrd 𝑝 : 𝜏si copyableΣ 𝜏
si

Σ; Δ; Γ ⊢ 𝑝 : 𝜏si ⇒ Γ

E-Copy
𝜎 ⊢ 𝑝 ⇓ _ ↦→ 𝑣

Σ ⊢ (𝜎 ; 𝑝) → (𝜎 ; 𝑣)

Applying Lemma E.3 to Δ; Γ ⊢shrd 𝑝 ⇒ { ℓ }, Δ; Γ ⊢shrd 𝑝 : 𝜏si, and Σ ⊢ 𝜎 : Γ to conclude that
𝜎 ⊢ 𝑝 ⇓ _ ↦→ 𝑣 . Thus, we can step with E-Copy.

Case T-Borrow:
From premise:

T-Borrow
Γ (𝑟) = ∅ Δ; Γ ⊢𝜔 𝑝 ⇒ { ℓ }

Δ; Γ ⊢𝜔 𝑝 : 𝜏xi

Σ; Δ; Γ ⊢ &𝑟 𝜔 𝑝 : &𝑟 𝜔 𝜏xi ⇒ Γ [𝑟 ↦→ { ℓ }]

We want to step with:
E-Borrow

𝜎 ⊢ 𝑝 ⇓ R ↦→ _

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝) → (𝜎 ; ptr R)

Applying Lemma E.3 to Δ; Γ ⊢𝜔 𝑝 ⇒ { ℓ }, Δ; Γ ⊢𝜔 𝑝 : 𝜏xi, and Σ ⊢ 𝜎 : Γ to conclude that
𝜎 ⊢ 𝑝 ⇓ R ↦→ _. Thus, we can step with E-Borrow.

Case T-BorrowIndex:

1:60 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

From premise:
T-BorrowIndex

Σ; Δ; Γ ⊢ 𝑒 : u32 ⇒ Γ′ Γ′ (𝑟) = ∅
Δ; Γ′ ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi

𝜏xi = [𝜏si; 𝑛] ∨ 𝜏xi = [𝜏si]

Σ; Δ; Γ ⊢ &𝑟 𝜔 𝑝 [𝑒] : &𝑟 𝜔 𝜏si ⇒ Γ′ [𝑟 ↦→ { ℓ }]

We proceed based on whether or not 𝑒 is a value. If it is not, we can decompose our expression into
the evaluation context &𝜌 𝜔 𝑝 [□] and redex 𝑒 . Then, by applying our induction hypothesis to the
typing derivation for 𝑒 , we know either that 𝑒 is an abort! expression or it 𝑒 steps to some 𝑒 ′. In
the former case, we can step with E-EvalCtxAbort. In the latter case, we can plug 𝑒 ′ back into our
evaluation context and step with E-EvalCtx.

If 𝑒 is a value, we would like to step with one of:
E-BorrowIndex
𝜎 ⊢ 𝑝 ⇓ R ↦→ [𝑣0 , . . . , 𝑣𝑛] 0 ≤ 𝑛𝑖 ≤ 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛𝑖]) → (𝜎 ; ptr R[𝑛𝑖])

E-BorrowIndexOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ [𝑣0 , . . . , 𝑣𝑛] 𝑛𝑖 < 0 ∨ 𝑛𝑖 > 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 ∗ 𝑝 [𝑛𝑖]) → (𝜎 ; abort!(“attempted to index out of bounds”))

Since 𝑒 is a value, we can apply Lemma E.9 to get Σ; • ⊢ Γ ≲ Γ′. Applying Lemma E.23, then gives
us Σ ⊢ 𝜎 : Γ′.
Then, we can apply Lemma E.3 to Δ; Γ′ ⊢𝜔 𝑝 ⇒ { ℓ }, Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi, and Σ ⊢ 𝜎 : Γ′ to get

𝜎 ⊢ 𝑝 ⇓ R ↦→ 𝑣 . By Lemma E.1, we know that 𝑣 = [𝑣0 , . . . , 𝑣𝑛] since the type tells us the shape of
the resultant value.
Since we wish to step with one of E-BorrowIndex and E-BorrowIndexOOB, we should observe

that we now have their shared requirement: 𝜎 ⊢ 𝑝 ⇓ R ↦→ [𝑣0 , . . . , 𝑣𝑛]. Their other obligations
are a bounds check which together are a tautology (i.e. one of them must hold). Thus, we can step
with the appropriate rule based on whether or not the bounds check succeeds.

Case T-BorrowSlice:
From premise:

T-BorrowSlice
Σ; Δ; Γ ⊢ 𝑒1 : u32 ⇒ Γ1 Σ; Δ; Γ1 ⊢ 𝑒2 : u32 ⇒ Γ2 Γ2 (𝑟) = ∅

Δ; Γ2 ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ2 ⊢𝜔 𝑝 : [𝜏si]

Σ; Δ; Γ ⊢ &𝑟 𝜔 𝑝 [𝑒1 ..𝑒2] : &𝑟 𝜔 [𝜏si] ⇒ Γ2 [𝑟 ↦→ { ℓ }]

The proof proceeds along similar lines as for T-BorrowIndex. We proceed based on whether or not
𝑒1 and 𝑒2 are values.

If 𝑒1 is not a value, then we can decompose our whole expression into the evaluation context
&𝜌 𝜔 𝑝 [□..𝑒2] and redex 𝑒1. Then, by applying our induction hypothesis to 𝑒1, we know either that
𝑒1 steps to some 𝑒 ′1 or is an abort! expression. In the former case, this satisfies our requirement since
we can plug 𝑒 ′ back into our evaluation context. In the latter case, we can step with E-EvalCtxAbort.

If 𝑒1 is a value and 𝑒2 is not a value, then we can decompose our whole expression into the
evaluation context &𝜌 𝜔 𝑝 [𝑣1..□] and redex 𝑒2. Then, by applying our induction hypothesis to 𝑒2,

Oxide: The Essence of Rust 1:61

we know either that 𝑒2 steps to some 𝑒 ′2 or is an abort! expression. In the former case, this satisfies
our requirement since we can plug 𝑒 ′ back into our evaluation context. In the latter case, we can
step with E-EvalCtxAbort.

If 𝑒1 and 𝑒2 are values, we would like to step with one of:
E-BorrowSlice
𝜎 ⊢ 𝑝 ⇓ R ↦→ [𝑣0 , . . . , 𝑣𝑛] 0 ≤ 𝑛1 ≤ 𝑛2 ≤ 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛1 ..𝑛2]) → (𝜎 ; ptr R[𝑛1 ..𝑛2])

E-BorrowSliceOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ [𝑣0 , . . . , 𝑣𝑛] 𝑛1 < 0 ∨ 𝑛1 > 𝑛 ∨ 𝑛2 < 0 ∨ 𝑛2 > 𝑛 ∨ 𝑛1 > 𝑛2

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛1 ..𝑛2]) → (𝜎 ; abort!(“attempted to slice out of bounds”))

Since 𝑒1 is a value, we can apply Lemma E.9 to get Σ; • ⊢ Γ ≲ Γ1. Then, since 𝑒2 is also a value,
we can apply Lemma E.9 to get Σ; • ⊢ Γ1 ≲ Γ2. Then, by transitivity, we get Σ; • ⊢ Γ ≲ Γ2. Then,
applying Lemma E.23 gives us Σ ⊢ 𝜎 : Γ2.
Then, we can apply Lemma E.3 to Δ; Γ2 ⊢𝜔 𝑝 ⇒ { ℓ }, Δ; Γ2 ⊢𝜔 𝑝 : [𝜏si], and Σ ⊢ 𝜎 : Γ2 to get

𝜎 ⊢ 𝑝 ⇓ R ↦→ 𝑣 . By Lemma E.1, we know that 𝑣 = [𝑣0 , . . . , 𝑣𝑛] since the type tells us the shape of
the resultant value.
Since we wish to step with one of E-BorrowSlice and E-BorrowSliceOOB, we should observe

that we now have their shared requirement: 𝜎 ⊢ 𝑝 ⇓ R ↦→ [𝑣0 , . . . , 𝑣𝑛]. Their other obligations
are a bounds check which together are a tautology (i.e. one of them must hold). Thus, we can step
with the appropriate rule based on whether or not the bounds check succeeds.

Case T-IndexCopy:
From premise:

T-IndexCopy
Σ; Δ; Γ ⊢ 𝑒 : u32 ⇒ Γ′ Δ; Γ′ ⊢shrd 𝑝 ⇒ { ℓ }

copyableΣ 𝜏
si Δ; Γ′ ⊢shrd 𝑝 : 𝜏xi 𝜏xi = [𝜏si; 𝑛] ∨ 𝜏xi = [𝜏si]

Σ; Δ; Γ ⊢ 𝑝 [𝑒] : 𝜏si ⇒ Γ′

We proceed based on whether or not 𝑒 is a value. If it is not, we can decompose our expression into
the evaluation context 𝑝 [□] and redex 𝑒 . Then, by applying our induction hypothesis to 𝑒 , we
know either that 𝑒 steps to some 𝑒 ′ or is an abort! expression. In the former case, this satisfies our
requirement since we can plug 𝑒 ′ back into our evaluation context. In the latter case, we can step
with E-EvalCtxAbort.

If 𝑒 is a value, we would like to step with one of:
E-IndexCopy
𝜎 ⊢ 𝑝 ⇓ _ ↦→ [𝑣0 , . . . , 𝑣𝑛𝑖 , . . . , 𝑣𝑛]

Σ ⊢ (𝜎 ; 𝑝 [𝑛𝑖]) → (𝜎 ; 𝑣𝑛𝑖)

E-IndexCopyOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ [𝑣0 , . . . , 𝑣𝑛] 𝑛𝑖 < 0 ∨ 𝑛𝑖 > 𝑛

Σ ⊢ (𝜎 ; 𝑝 [𝑛𝑖]) → (𝜎 ; abort!(“attempted to index out of bounds”))

Since 𝑒 is a value, we can apply Lemma E.9 to get Σ; • ⊢ Γ ≲ Γ′. Applying Lemma E.23, then gives
us Σ ⊢ 𝜎 : Γ′.
Then, we can apply Lemma E.3 to Δ; Γ′ ⊢𝜔 𝑝 ⇒ { ℓ }, Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi, and Σ ⊢ 𝜎 : Γ′ to get

𝜎 ⊢ 𝑝 ⇓ _ ↦→ 𝑣 . By Lemma E.1, we know that 𝑣 = [𝑣0 , . . . , 𝑣𝑛] since the type tells us the shape of
the resultant value.

1:62 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Since we wish to step with one of E-IndexCopy and E-IndexCopyOOB, we should observe that
we now have their shared requirement: 𝜎 ⊢ 𝑝 ⇓ _ ↦→ [𝑣0 , . . . , 𝑣𝑛]. Their other obligations are a
bounds check which together are a tautology (i.e. one of them must hold). Thus, we can step with
the appropriate rule based on whether or not the bounds check succeeds.

Case T-Seq:
From premise:

T-Seq
Σ; Δ; Γ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1

Σ; Δ; gc-loans(Γ1) ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ ⊢ 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

We proceed based on whether or not 𝑒1 is a value. If it is not, we can decompose our expression
into the evaluation context □; 𝑒2 and redex 𝑒1. Then, by applying our induction hypothesis to 𝑒1,
we know either that 𝑒1 steps to some 𝑒 ′1 or is an abort! expression. In the former case, this satisfies
our requirement since we can plug 𝑒 ′1 back into our evaluation context. In the latter case, we can
step with E-EvalCtxAbort.

If 𝑒1 is a value, we can step with:
E-Seq

Σ ⊢ (𝜎 ; 𝑣; 𝑒) → (𝜎 ; 𝑒)

Case T-Branch:
From premise:

T-Branch
Σ; Δ; Γ ⊢ 𝑒1 : bool ⇒ Γ1 Σ; Δ; Γ1 ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ1 ⊢ 𝑒3 : 𝜏si3 ⇒ Γ3 𝜏si = 𝜏si2 ∨ 𝜏si = 𝜏si3
Δ; Γ2 ⊢ 𝜏si2 ≲ 𝜏si ⇒ Γ′2 Δ; Γ3 ⊢ 𝜏si3 ≲ 𝜏si ⇒ Γ′3 Γ′2 ⋓ Γ′3 = Γ′

Σ; Δ; Γ ⊢ if 𝑒1 { 𝑒2 } else { 𝑒3 } : 𝜏si ⇒ Γ′

We proceed based on whether or not 𝑒1 is a value. If it is not, we can decompose our expression
into the evaluation context if □ { 𝑒2 } else { 𝑒3 } and redex 𝑒1. Then, by applying our induction
hypothesis to 𝑒1, we know either that 𝑒1 steps to some 𝑒 ′1 or is an abort! expression. In the former
case, this satisfies our requirement since we can plug 𝑒 ′1 back into our evaluation context. In the
latter case, we can step with E-EvalCtxAbort.

If 𝑒1 is a value, we would like to step with one of:
E-IfTrue

Σ ⊢ (𝜎 ; if true { 𝑒1 } else { 𝑒2 }) → (𝜎 ; 𝑒1)

E-IfFalse

Σ ⊢ (𝜎 ; if false { 𝑒1 } else { 𝑒2 }) → (𝜎 ; 𝑒2)

Since 𝑒1 is a value, applying Lemma E.1 tells us that 𝑒1 is either true or false. In the former case,
we can step with E-IfTrue and in the latter case, we can step with E-IfFalse

Case T-Let:

Oxide: The Essence of Rust 1:63

From premise:
T-Let
Σ; Δ; Γ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1 Δ; Γ1 ⊢ 𝜏si1 ≲ 𝜏si𝑎 ⇒ Γ′1

Σ; Δ; gc-loans(Γ′1 , 𝑥 : 𝜏si𝑎) ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 , 𝑥 : 𝜏sd

Σ; Δ; Γ ⊢ let 𝑥 : 𝜏si𝑎 = 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

We proceed based on whether or not 𝑒1 is a value. If it is not, we can decompose our expression
into the evaluation context let 𝑥 : 𝜏si𝑎 = □; 𝑒2 and redex 𝑒1. Then, by applying our induction
hypothesis to 𝑒1, we know either that 𝑒1 steps to some 𝑒 ′1 or is an abort! expression. In the former
case, this satisfies our requirement since we can plug 𝑒 ′1 back into our evaluation context. In the
latter case, we can step with E-EvalCtxAbort.

If 𝑒1 is a value, we can step with:
E-Let

Σ ⊢ (𝜎 ; let 𝑥 : 𝜏si𝑎 = 𝑣; 𝑒) → (𝜎 , 𝑥 ↦→ 𝑣; shift 𝑒)

Case T-LetProv:
From premise:

T-LetProv
Σ; Δ; Γ , 𝑟 ↦→ {} ⊢ 𝑒 : 𝜏si ⇒ Γ′ , 𝑟 ↦→ {ℓ }

Σ; Δ; Γ ⊢ letprov <𝑟> { 𝑒 } : 𝜏si ⇒ Γ′

We proceed based on whether or not 𝑒 is a value. If it is not, we can decompose our expression into
the evaluation context letprov<𝑟> { □ } and redex 𝑒 . Then, by applying our induction hypothesis
to 𝑒 , we know either that 𝑒 steps to some 𝑒 ′ or is an abort! expression. In the former case, this
satisfies our requirement since we can plug 𝑒 ′ back into our evaluation context. In the latter case,
we can step with E-EvalCtxAbort.

If 𝑒 is a value, we can step with:
E-LetProv

Σ ⊢ (𝜎 ; letprov <𝑟> { 𝑣 }) → (𝜎 ; 𝑣)

Case T-Assign:
From premise:

T-Assign
Σ; Δ; Γ ⊢ 𝑒 : 𝜏si ⇒ Γ1 Γ1 (𝜋) = 𝜏sx

(𝜏sx = 𝜏sd ∨ Δ; Γ1 ⊢uniq 𝜋 ⇒ { uniq𝜋 })
Δ; Γ1 ⊢ 𝜏si ≲ 𝜏sx ⇒ Γ′

Σ; Δ; Γ ⊢ 𝜋 ≔ 𝑒 : unit ⇒ Γ′ [𝜋 ↦→ 𝜏si] ▷− 𝜋

We proceed based on whether or not 𝑒 is a value. If it is not, we can decompose our expression into
the evaluation context 𝑝 ≔ □ and redex 𝑒 . Then, by applying our induction hypothesis to 𝑒 , we
know either that 𝑒 steps to some 𝑒 ′ or is an abort! expression. In the former case, this satisfies our

1:64 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

requirement since we can plug 𝑒 ′ back into our evaluation context. In the latter case, we can step
with E-EvalCtxAbort.

If 𝑒 is a value, we would like to step with:
E-Assign

𝜎 ⊢ 𝑝 ⇓ V 𝑝 = 𝑝□ [𝑥]

Σ ⊢ (𝜎 ; 𝑝 ≔ 𝑣) → (𝜎 [𝑥 ↦→ V [𝑣]]; ())

Since 𝑒 is a value, we can apply Lemma E.9 to get Σ; • ⊢ Γ ≲ Γ′. Applying Lemma E.23, then gives
us Σ ⊢ 𝜎 : Γ′.
Then, we can apply Lemma E.3 to Δ; Γ′ ⊢𝜔 𝑝 ⇒ { ℓ }, Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi, and Σ ⊢ 𝜎 : Γ′ to get

𝜎 ⊢ 𝑝 ⇓ R ↦→ 𝑣 .
Finally, we apply Lemma E.4 to get 𝜎 ⊢ 𝑝 ⇓ V . This allows us to apply E-Assign.

Case T-ForArray:
From premise:

T-ForArray
Σ; Δ; Γ ⊢ 𝑒1 : [𝜏si; 𝑛] ⇒ Γ1

Σ; Δ; Γ1 , 𝑥 : 𝜏si ⊢ 𝑒2 : unit ⇒ Γ1 , 𝑥 : 𝜏sd

Σ; Δ; Γ ⊢ for 𝑥 in 𝑒1 { 𝑒2 } : unit ⇒ Γ1

We proceed based on whether or not 𝑒1 is a value. If it is not, we can decompose our expression into
the evaluation context for 𝑥 in □ { 𝑒2 } and redex 𝑒1. Then, by applying our induction hypothesis
to 𝑒1, we know either that 𝑒1 steps to some 𝑒 ′1 or is an abort! expression. In the former case, this
satisfies our requirement since we can plug 𝑒 ′1 back into our evaluation context. In the latter case,
we can step with E-EvalCtxAbort.

If 𝑒1 is a value, we would like to step with one of:
E-ForArray

Σ ⊢ (𝜎 ; for 𝑥 in [𝑣0 , . . . , 𝑣𝑛] { 𝑒 }) → (𝜎 , 𝑥 ↦→ 𝑣0; shift 𝑒 ; for 𝑥 in [𝑣1 , . . . , 𝑣𝑛] { 𝑒 })

E-ForEmptyArray

Σ ⊢ (𝜎 ; for 𝑥 in [] { 𝑒 }) → (𝜎 ; ())

Since 𝑒1 is a value, then by Lemma E.1, we know that 𝑒1 is of the form [𝑣1 , . . . , 𝑣𝑛]. If 𝑛 > 0, then
we can step with E-ForArray, and if 𝑛 = 0, then we can step with E-ForEmptyArray.

Case T-ForSlice:
From premise:

T-ForSlice
Σ; Δ; Γ ⊢ 𝑒1 : &𝜌 𝜔 [𝜏si] ⇒ Γ1

Σ; Δ; Γ1 , 𝑥 : &𝜌 𝜔 𝜏si ⊢ 𝑒2 : unit ⇒ Γ1 , 𝑥 : 𝜏sx1

Σ; Δ; Γ ⊢ for 𝑥 in 𝑒1 { 𝑒2 } : unit ⇒ Γ2

We proceed based on whether or not 𝑒1 is a value. If it is not, we can decompose our expression into
the evaluation context for 𝑥 in □ { 𝑒2 } and redex 𝑒1. Then, by applying our induction hypothesis

Oxide: The Essence of Rust 1:65

to 𝑒1, we know either that 𝑒1 steps to some 𝑒 ′1 or is an abort! expression. In the former case, this
satisfies our requirement since we can plug 𝑒 ′1 back into our evaluation context. In the latter case,
we can step with E-EvalCtxAbort.

If 𝑒1 is a value, we would like to step with one of:
E-ForSlice

𝜎 ⊢ R ⇓ _ ↦→ [𝑣1 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛] 𝑖 < 𝑗 𝑖′ = 𝑖 + 1

Σ ⊢ (𝜎 ; for 𝑥 in ptr R[𝑖 .. 𝑗] { 𝑒 }) → (𝜎 , 𝑥 ↦→ ptr R[𝑖]; shift 𝑒 ; for 𝑥 in ptr R[𝑖′.. 𝑗] { 𝑒 })

E-ForEmptySlice

Σ ⊢ (𝜎 ; for 𝑥 in ptr 𝜋 [𝑛..𝑛] { 𝑒 }) → (𝜎 ; ())

If 𝑒1 is a value, then by Lemma E.1, we know that 𝑒1 is of the form ptr R[𝑛1 ..𝑛2]. Further, by
inversion of T-Pointer for the typing derivation of 𝑒1, we get Σ; Γ ⊢ R[𝑖 .. 𝑗] : . By inversion of
WF-RefSliceArray or WF-RefSliceSlice (one of which must apply since the referent ends in a
slice), we know that 𝑖 ≤ 𝑗 . If 𝑖 < 𝑗 , we stepwith E-ForSlice and if 𝑖 = 𝑗 , we stepwith E-ForEmptySlice.

Case T-Closure:
From premise:

T-Closure
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 free-nc-varsΓ (𝑒) = 𝑥𝑛𝑐 𝑟 = free-provs(Γ (𝑥𝑓)) , free-provs(𝑒)

F𝑐 = 𝑟 ↦→ Γ (𝑟) , 𝑥𝑓 : Γ (𝑥𝑓) Σ; Δ; Γ [𝑥𝑛𝑐 ↦→ Γ (𝑥𝑛𝑐)†] ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ ⊢ |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } : (𝜏si1 , . . . , 𝜏si𝑛) F𝑐→ 𝜏si𝑟 ⇒ Γ′

We want to step with:
E-Closure

free-vars(𝑒) = 𝑥𝑓 free-nc-vars𝜎 (𝑒) = 𝑥𝑛𝑐 𝜍𝑐 = 𝜎 | 𝑥𝑓
Σ ⊢ (𝜎 ; |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 }) → (𝜎 [𝑥𝑛𝑐 ↦→ dead]; ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩)

Since free-vars(·) and free-nc-vars𝜎 (·) are total, we can always step with E-Closure.

Case T-App:
From premise:

T-App
Σ; Δ; Γ ⊢ Φ Δ; Γ ⊢ 𝜌 Σ; Δ; Γ ⊢ 𝜏si

Σ; Δ; Γ ⊢ 𝑒𝑓 : ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛) Φ𝑐→ 𝜏si
𝑓
where 𝜚1 : 𝜚2 ⇒ Γ0

∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 [Φ/𝜑] [𝜌/𝜚] [𝜏si/𝛼] ⇒ Γ𝑖 Δ; Γ𝑛 ⊢ 𝜚2 [𝜌/𝜚] :> 𝜚1 [𝜌/𝜚] ⇒ Γ𝑏

Σ; Δ; Γ ⊢ 𝑒𝑓 ::<Φ , 𝜌 , 𝜏si> (𝑒1 , . . . , 𝑒𝑛) : 𝜏si
𝑓
[Φ/𝜑] [𝜌/𝜚] [𝜏si/𝛼] ⇒ Γ𝑏

We proceed based on whether or not 𝑒𝑓 is a value. If it is not, we can decompose our expression into
the evaluation context □::<𝜌 ′ , 𝜏si>(𝑒1 , . . . , 𝑒𝑛) and redex 𝑒𝑓 . Then, by applying our induction
hypothesis to 𝑒𝑓 , we know either that 𝑒𝑓 steps to some 𝑒 ′

𝑓
or is an abort! expression. In the former

case, this satisfies our requirement since we can plug 𝑒 ′
𝑓
back into our evaluation context. In the

latter case, we can step with E-EvalCtxAbort.

1:66 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Next, we’ll proceed based onwhether or not each expression 𝑒𝑖 is a value. If any of them are not, we
can decompose our expression into the evaluation context 𝑣 𝑓 ::<𝜌 ′ , 𝜏si>(𝑣1 , . . . , 𝑣𝑚 , □ , 𝑒1 , . . . , 𝑒𝑛′)
and redex 𝑒𝑖 . Then, by applying our induction hypothesis to 𝑒𝑖 , we know either that 𝑒𝑖 steps
to some 𝑒 ′𝑖 or is an abort! expression. In the former case, this satisfies our requirement since
we can plug 𝑒 ′𝑖 back into our evaluation context. In the latter case, we can step with E-EvalCtxAbort.

If 𝑒𝑓 is a value and every 𝑒𝑖 is a value, we would like to step with one of:
E-AppClosure

𝑣𝑓 = ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩

Σ ⊢ (𝜎 ; 𝑣𝑓 (𝑣1 , . . . , 𝑣𝑛)) → (𝜎 ♮ 𝜍𝑐 , 𝑥1 ↦→ 𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 ; framed 𝑒)

E-AppFunction
Σ(𝑓) = fn 𝑓 <𝜑 , 𝜚 , 𝛼> (𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛) → 𝜏s𝑟 where 𝜚 : 𝜚 ′ { 𝑒 }

Σ ⊢ (𝜎 ; 𝑓 ::<Φ , 𝑟 ′ , 𝜏s> (𝑣1 , . . . , 𝑣𝑛)) → (𝜎 ♮ 𝑥1 ↦→ 𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 ; framed 𝑒 [Φ/𝜑] [𝑟 ′/𝜚] [𝜏
s/𝛼])

Since 𝑒𝑓 is a value, then by Lemma E.1, we know that it either has the form
⟨𝜎𝑐 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩ or 𝑓 . Then, since all of the 𝑒𝑖 are values, then
we can step using either E-AppClosure or E-AppFunction respectively.

Case T-Unit:
From premise:

T-Unit

Σ; Δ; Γ ⊢ () : unit ⇒ Γ

By inspection of the value grammar, we know that () is already a value.

Case T-u32:
From premise:

T-u32

Σ; Δ; Γ ⊢ 𝑛 : u32 ⇒ Γ

By inspection of the value grammar, we know that 𝑛 is already a value.

Case T-True:
From premise:

T-True

Σ; Δ; Γ ⊢ true : bool ⇒ Γ

By inspection of the value grammar, we know that true is already a value.

Case T-False:

Oxide: The Essence of Rust 1:67

From premise:
T-False

Σ; Δ; Γ ⊢ false : bool ⇒ Γ

By inspection of the value grammar, we know that false is already a value.

Case T-Tuple:
From premise:

T-Tuple
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 ⇒ Γ𝑖

Σ; Δ; Γ0 ⊢ (𝑒1 , . . . , 𝑒𝑛) : (𝜏si1 , . . . , 𝜏si𝑛) ⇒ Γ𝑛

We’ll proceed based on whether or not each expression 𝑒𝑖 is a value. If any of them are not, we can
decompose our expression into the evaluation context (𝑣1 , . . . , 𝑣𝑚 , □ , 𝑒1 , . . . , 𝑒𝑛′) and redex 𝑒𝑖 .
Then, by applying our induction hypothesis to 𝑒𝑖 , we know either that 𝑒𝑖 steps to some 𝑒 ′𝑖 or to an
abort! expression. In either case, this satisfies our requirement, since we can plug 𝑒 ′𝑖 back into our
evaluation context.

If every expression 𝑒𝑖 is a value, then the whole expression is a value by the definition of values.

Case T-Array:
From premise:

T-Array
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1 ⊢ 𝑒𝑖 : 𝜏si ⇒ Γ𝑖

Σ; Δ; Γ ⊢ [𝑒1 , . . . , 𝑒𝑛] : [𝜏si; 𝑛] ⇒ Γ𝑛

We’ll proceed based on whether or not each expression 𝑒𝑖 is a value. If any of them are not, we can
decompose our expression into the evaluation context [𝑣1 , . . . , 𝑣𝑚 , □ , 𝑒1 , . . . , 𝑒𝑛′] and redex 𝑒𝑖 .
Then, by applying our induction hypothesis to 𝑒𝑖 , we know either that 𝑒𝑖 steps to some 𝑒 ′𝑖 or to an
abort! expression. In either case, this satisfies our requirement, since we can plug 𝑒 ′𝑖 back into our
evaluation context.

If every expression 𝑒𝑖 is a value, then the whole expression is a value by the definition of values.

Case T-Abort:
From premise:

T-Abort

Σ; Δ; Γ ⊢ abort!(str) : 𝜏sx ⇒ Γ′

By definition, abort!(. . .) is an abort! expression.

Case T-Framed:

1:68 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

From premise:
T-Framed
Σ; Δ; Γ ⊢ 𝑒 : 𝜏si ⇒ Γ′ ♮ F′

Σ; Δ; Γ ⊢ framed 𝑒 : 𝜏si ⇒ Γ′

We proceed based on whether or not 𝑒 is a value. If it is not, we can decompose our expression into
the evaluation context framed □ and redex 𝑒 . Then, by applying our induction hypothesis to 𝑒 , we
know either that 𝑒 steps to some 𝑒 ′ or to an abort! expression. In either case, this satisfies our
requirement, since we can plug 𝑒 ′ back into our evaluation context.

If 𝑒 is a value, then we would like to step with:
E-Framed

Σ ⊢ (𝜎 ♮ 𝜍 ; framed 𝑣) → (𝜎 ; 𝑣)

In order to do so, we need to know 𝑥 ∈ dom(𝜎). Fortunately, we know from our assumption that
Σ ⊢ 𝜎 : Γ (via WF-Stack). The premise of WF-Stack tells us that dom(𝜎) = dom(Γ), and thus the
𝑥 ∈ dom(Γ) from the premise of T-Framed is sufficient to tell us that 𝑥 ∈ dom(𝜎). Thus, we can
step with E-Framed.

Case T-Pointer:
From premise:

T-Pointer
Σ; Γ ⊢ R□ [𝜋] : 𝜏xi 𝜔𝜋 ∈ Γ (𝑟)

Σ; Δ; Γ ⊢ ptr R□ [𝜋] : &𝑟 𝜔 𝜏xi ⇒ Γ

By inspection of the value grammar, we know that ptr 𝜋 is already a value.

Case T-ClosureValue:
From premise:

T-ClosureValue
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 = dom(F𝑐) |𝑥 𝑟 = free-provs(Γ (𝑥𝑓)) , free-provs(𝑒) = dom(F𝑐) |𝑟

Σ; Γ ⊢ 𝜍𝑐 : F𝑐 Σ; Δ; Γ ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ ⊢ ⟨𝜍𝑐 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩ : (𝜏si1 , . . . , 𝜏si𝑛) F𝑐→ 𝜏si𝑟 ⇒ Γ

By inspection of the value grammar, we know that ⟨𝜎 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩ is
already a value.

Case T-Dead:
From premise:

T-Dead

Σ; Δ; Γ ⊢ 𝑣 : 𝜏si
† ⇒ Γ

The type 𝜏si† is not in the grammar of 𝜏si. Thus, we have a contradiction.

Oxide: The Essence of Rust 1:69

Case T-Drop:
From premise:

T-Drop
Γ (𝜋) = 𝜏si𝜋 Σ; Δ; Γ [𝜋 ↦→ 𝜏si

†
𝜋] ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Σ; Δ; Γ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

By R-Env, we have that Σ; • ⊢ Γ ≲ Γ [𝜋 ↦→ 𝜏si
†

𝜋]. Then, applying Lemma E.23 with Σ ⊢ 𝜎 : Γ (from
our premise) gives us Σ ⊢ 𝜎 : Γ [𝜋 ↦→ 𝜏si

†
𝜋]. We can then apply our induction hypothesis to this and

Σ; •; Γ [𝜋 ↦→ 𝜏si
†

𝜋] ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓 to reach our goal.

1:70 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

E.3 Preservation
Lemma E.31 (Preservation). If Σ; •; Γ ⊢ 𝑒 : 𝜏 si1 ⇒ Γ𝑓 and Σ ⊢ 𝜎 : Γ and Σ ⊢ (𝜎 ; 𝑒) →

(𝜎 ′; 𝑒 ′) , then there exists Γ𝑖 such that Σ ⊢ 𝜎 ′ : Γ𝑖 and Σ; •; Γ𝑖 ⊢ 𝑒 ′ : 𝜏 si2 ⇒ Γ′
𝑓

and

•; Γ′
𝑓
⊢ 𝜏 si2 ≲ 𝜏 si1 ⇒ Γ𝑠 and there exists Γ𝑜 such that Γ𝑓 = Γ𝑠 ⋓ Γ𝑜 .

Proof. We proceed by induction on the derivation Σ; •; Γ ⊢ 𝑒 : 𝜏 ⇒ Γ𝑓

Case T-Move:

From premise:

T-Move
Δ; Γ ⊢uniq 𝜋 ⇒ { uniq𝜋 }

Γ (𝜋) = 𝜏si noncopyableΣ 𝜏
si

Σ; Δ; Γ ⊢ 𝜋 : 𝜏si ⇒ Γ [𝜋 ↦→ 𝜏si
†]

Since 𝑒 = 𝜋 , by inspection of the reduction rules, we know that 𝑒 steps with the following rule:

E-Move
𝜎 ⊢ 𝜋 ⇓ _ ↦→ 𝑣

Σ ⊢ (𝜎 ; 𝜋) → (𝜎 [𝜋 ↦→ dead]; 𝑣)

We then pick Γ𝑖 to be Γ [𝜋 ↦→ 𝜏si
†] , and need to show:

Σ ⊢ 𝜎 [𝜋 ↦→ dead] : Γ [𝜋 ↦→ 𝜏si
†] Applying Lemma E.23 to Σ; • ⊢ Γ ≲ Γ [𝜋 ↦→ 𝜏si

†]
(immediate by R-Env) and Σ ⊢ 𝜎 : Γ (from premise)
gives us Σ ⊢ 𝜎 : Γ [𝜋 ↦→ 𝜏si

†]. Then, since we know
Σ; •; Γ [𝜋 ↦→ 𝜏si

†] ⊢ dead : 𝜏si† ⇒ Γ [𝜋 ↦→ 𝜏si
†] (by T-

Dead), we can conclude Σ ⊢ 𝜎 [𝜋 ↦→ dead] : Γ [𝜋 ↦→ 𝜏si
†].

Σ; •; Γ [𝜋 ↦→ 𝜏si
†] ⊢ 𝑣 : 𝜏si ⇒ Γ [𝜋 ↦→ 𝜏si

†] Applying Lemma E.3 to •; Γ ⊢uniq 𝜋 ⇒ { uniq𝜋 },
•; Γ ⊢uniq 𝜋 : 𝜏si (immediate by TC-Place with Γ(𝜋) =
𝜏si), and Σ ⊢ 𝜎 : Γ gives us Σ; •; Γ ⊢ 𝑣 : 𝜏si ⇒ Γ. Then,
by applying Lemma E.20 with Σ; • ⊢ Γ ≲ Γ [𝜋 ↦→ 𝜏si

†]
(immediate by R-Env), we can conclude Σ; •; Γ [𝜋 ↦→
𝜏si

†] ⊢ 𝑣 : 𝜏si ⇒ Γ [𝜋 ↦→ 𝜏si
†].

•; Γ [𝜋 ↦→ 𝜏si
†] ⊢ 𝜏si ≲ 𝜏si ⇒ Γ [𝜋 ↦→ 𝜏si

†] Immediate by S-Refl.
∃Γ𝑜 .Γ [𝜋 ↦→ 𝜏si

†] ⋓ Γ𝑜 = Γ [𝜋 ↦→ 𝜏si
†] Γ𝑜 = Γ [𝜋 ↦→ 𝜏si

†]

Case T-Copy:

Oxide: The Essence of Rust 1:71

From premise:

T-Copy
Δ; Γ ⊢shrd 𝑝 ⇒ { ℓ }

Δ; Γ ⊢shrd 𝑝 : 𝜏si copyableΣ 𝜏
si

Σ; Δ; Γ ⊢ 𝑝 : 𝜏si ⇒ Γ

Since 𝑒 = 𝑝 , by inspection of the reduction rules, we know that 𝑒 steps with the following rule:

E-Copy
𝜎 ⊢ 𝑝 ⇓ _ ↦→ 𝑣

Σ ⊢ (𝜎 ; 𝑝) → (𝜎 ; 𝑣)

We then pick Γ𝑖 to be Γ , and need to show:

Σ ⊢ 𝜎 : Γ Immediate from our premise.
Σ; •; Γ ⊢ 𝑣 : 𝜏si ⇒ Γ Applying Lemma E.3 to •; Γ ⊢shrd 𝑝 ⇒ { ℓ }, •; Γ ⊢shrd 𝑝 : 𝜏si, and Σ ⊢ 𝜎 : Γ

gives us Σ; •; Γ ⊢ 𝑣 : 𝜏si ⇒ Γ.
•; Γ ⊢ 𝜏si ≲ 𝜏si ⇒ Γ Immediate by S-Refl.
∃Γ𝑜 .Γ ⋓ Γ𝑜 = Γ Γ𝑜 = Γ

Case T-Borrow:

From premise:

T-Borrow
Γ (𝑟) = ∅ Δ; Γ ⊢𝜔 𝑝 ⇒ { ℓ }

Δ; Γ ⊢𝜔 𝑝 : 𝜏xi

Σ; Δ; Γ ⊢ &𝑟 𝜔 𝑝 : &𝑟 𝜔 𝜏xi ⇒ Γ [𝑟 ↦→ { ℓ }]

Since 𝑒 = &𝜌 𝜔 𝑝 , by inspection of the reduction rules, we know that 𝑒 steps with the following
rule:

E-Borrow
𝜎 ⊢ 𝑝 ⇓ R ↦→ _

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝) → (𝜎 ; ptr R)

We then pick Γ𝑖 to be Γ [𝑟 ↦→ { ℓ }] , and need to show:

Σ ⊢ 𝜎 : Γ [𝑟 ↦→ { ℓ }] Apply Lemma E.22 to Σ ⊢ 𝜎 : Γ (from our premise) and ⊢
Σ; •; Γ [𝑟 ↦→ {ℓ }] (from our premise) gives us Σ ⊢ 𝜎 : Γ [𝑟 ↦→ {ℓ }].

Σ; •; Γ𝑖 ⊢ ptr R : &𝑟 𝜔 𝜏xi ⇒ Γ𝑖 Applying Lemma E.5 to Σ ⊢ 𝜎 : Γ, and 𝜎 ⊢ 𝑝 ⇓ R ↦→ _ gives us
Σ; Γ ⊢ R□ [𝜋] : 𝜏xi. Then, note that referent well-formedness does
not depend on the contents of loan sets. This means we can also
conclude Σ; Γ [𝑟 ↦→ { ℓ }] ⊢ R□ [𝜋] : 𝜏xi.
Applying Lemma E.6 to Σ ⊢ 𝜎 : Γ, 𝜎 ⊢ 𝑝 ⇓ R ↦→ _, and •; Γ ⊢𝜔
𝑝 ⇒ { ℓ } gives us R = R□ [𝜋] and 𝜔𝜋 ∈ { ℓ }.
Finally, we can apply T-Pointer to the two facts above to get
Σ; •; Γ [𝑟 ↦→ { ℓ }] ⊢ ptr R : &𝑟 𝜔 𝜏xi ⇒ Γ [𝑟 ↦→ { ℓ }].

•; Γ𝑖 ⊢ &𝑟 𝜔 𝜏xi ≲ &𝑟 𝜔 𝜏xi ⇒ Γ𝑖 Immediate by S-Refl.
∃Γ𝑜 .Γ𝑖 ⋓ Γ𝑜 = Γ𝑖 Γ𝑜 = Γ𝑖

1:72 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Case T-BorrowIndex:

From premise:

T-BorrowIndex
Σ; Δ; Γ ⊢ 𝑒 : u32 ⇒ Γ′ Γ′ (𝑟) = ∅
Δ; Γ′ ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi

𝜏xi = [𝜏si; 𝑛] ∨ 𝜏xi = [𝜏si]

Σ; Δ; Γ ⊢ &𝑟 𝜔 𝑝 [𝑒] : &𝑟 𝜔 𝜏si ⇒ Γ′ [𝑟 ↦→ { ℓ }]

Since 𝑒 = &𝜌 𝜔 𝑝 [𝑒𝑖], by inspection of the reduction rules, we know that 𝑒 steps with the following
rule:

E-BorrowIndex
𝜎 ⊢ 𝑝 ⇓ R ↦→ [𝑣0 , . . . , 𝑣𝑛] 0 ≤ 𝑛𝑖 ≤ 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛𝑖]) → (𝜎 ; ptr R[𝑛𝑖])

E-BorrowIndexOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ [𝑣0 , . . . , 𝑣𝑛] 𝑛𝑖 < 0 ∨ 𝑛𝑖 > 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 ∗ 𝑝 [𝑛𝑖]) → (𝜎 ; abort!(“attempted to index out of bounds”))

Then, for each possible rule, we’ll pick Γ𝑖 separately. The cases proceed as follows:
For E-BorrowIndex, we pick Γ𝑖 to be Γ′[𝑟 ↦→ { ℓ }] , and need to show:

Σ ⊢ 𝜎 : Γ′ [𝑟 ↦→ { ℓ }] Applying Lemma E.9 to the typing derivation (from T-
BorrowIndex) for 𝑒 (which we know is a value from E-
BorrowIndex) gives us Σ; • ⊢ Γ ≲ Γ′.
Then, applying Lemma E.23 to Σ; • ⊢ Γ ≲ Γ′ and Σ ⊢ 𝜎 : Γ
(from premise) gives us Σ ⊢ 𝜎 : Γ′.
Finally, applying Lemma E.22 to Σ ⊢ 𝜎 : Γ′ gives us Σ ⊢ 𝜎 :
Γ′[𝑟 ↦→ { ℓ }].

Σ; •; Γ𝑖 ⊢ ptr R[𝑛𝑖] : &𝑟 𝜔 𝜏si ⇒ Γ𝑖 Applying Lemma E.9 to the typing derivation (from T-
BorrowIndex) for 𝑒 (which we know is a value from E-
BorrowIndex) gives us Σ; • ⊢ Γ ≲ Γ′.
Then, applying Lemma E.23 to Σ; • ⊢ Γ ≲ Γ′ and Σ ⊢ 𝜎 : Γ
(from premise) gives us Σ ⊢ 𝜎 : Γ′.
Applying Lemma E.5 to Σ ⊢ 𝜎 : Γ′, and 𝜎 ⊢ 𝑝 ⇓ R ↦→
[𝑣0 , . . . , 𝑣𝑛] gives us Σ; Γ′ ⊢ R□ [𝜋] : 𝜏xi. Then, note that
referent well-formedness does not depend on the contents of
loan sets. This means we can also conclude Σ; Γ′[𝑟 ↦→ { ℓ }] ⊢
R□ [𝜋] : 𝜏xi. We can then apply WF-RefIndexArray or WF-
RefIndexSlice to get Σ; Γ′[𝑟 ↦→ { ℓ }] ⊢ R□ [𝜋] [𝑛𝑖] : 𝜏xi.
Applying Lemma E.6 to Σ ⊢ 𝜎 : Γ′, 𝜎 ⊢ 𝑝 ⇓ R ↦→ [𝑣0 , . . . , 𝑣𝑛],
and •; Γ′ ⊢𝜔 𝑝 ⇒ { ℓ } gives us R = R[𝜋] and 𝜔𝜋 ∈ { ℓ }.
Finally, we can apply T-Pointer to the two facts above to get
Σ; •; Γ [𝑟 ↦→ { ℓ }] ⊢ ptr R[𝑛𝑖] : &𝑟 𝜔 𝜏xi ⇒ Γ [𝑟 ↦→ { ℓ }].

•; Γ𝑖 ⊢ &𝑟 𝜔 𝜏si ≲ &𝑟 𝜔 𝜏si ⇒ Γ𝑖 Immediate by S-Refl.
∃Γ𝑜 .Γ𝑖 ⋓ Γ𝑜 = Γ𝑖 Γ𝑜 = Γ𝑖

For E-BorrowIndexOOB, we pick Γ𝑖 to be Γ , and need to show:

Oxide: The Essence of Rust 1:73

Σ ⊢ 𝜎 : Γ This is given as an assumption.
Σ; •; Γ ⊢ abort!(. . .) : &𝑟 𝜔 𝜏si ⇒ Γ An abort! expression is well-typed (at any type) via the rule

T-Abort.
•; Γ ⊢ &𝑟 𝜔 𝜏si ≲ &𝑟 𝜔 𝜏si ⇒ Γ Immediate by S-Refl.

∃Γ𝑜 .Γ𝑖 ⋓ Γ𝑜 = Γ𝑖 Γ𝑜 = Γ𝑖

Case T-BorrowSlice:

From premise:

T-BorrowSlice
Σ; Δ; Γ ⊢ 𝑒1 : u32 ⇒ Γ1 Σ; Δ; Γ1 ⊢ 𝑒2 : u32 ⇒ Γ2 Γ2 (𝑟) = ∅

Δ; Γ2 ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ2 ⊢𝜔 𝑝 : [𝜏si]

Σ; Δ; Γ ⊢ &𝑟 𝜔 𝑝 [𝑒1 ..𝑒2] : &𝑟 𝜔 [𝜏si] ⇒ Γ2 [𝑟 ↦→ { ℓ }]

Since 𝑒 = &𝑟 𝜔 𝑝 [𝑒1 ..𝑒2], by inspection of the reduction rules, we know that 𝑒 steps with the
following rule:

E-BorrowSlice
𝜎 ⊢ 𝑝 ⇓ R ↦→ [𝑣0 , . . . , 𝑣𝑛] 0 ≤ 𝑛1 ≤ 𝑛2 ≤ 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛1 ..𝑛2]) → (𝜎 ; ptr R[𝑛1 ..𝑛2])

E-BorrowSliceOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ [𝑣0 , . . . , 𝑣𝑛] 𝑛1 < 0 ∨ 𝑛1 > 𝑛 ∨ 𝑛2 < 0 ∨ 𝑛2 > 𝑛 ∨ 𝑛1 > 𝑛2

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛1 ..𝑛2]) → (𝜎 ; abort!(“attempted to slice out of bounds”))

Then, for each possible rule, we’ll pick Γ𝑖 separately. The cases proceed as follows:
For E-BorrowSlice, we pick Γ𝑖 to be Γ2 [𝑟 ↦→ { ℓ }] , and need to show:

1:74 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Σ ⊢ 𝜎 : Γ2 [𝑟 ↦→ { ℓ }] Applying Lemma E.9 to the typing derivation (from T-
BorrowSlice) for 𝑒1 (which we know is a value from E-
BorrowSlice) gives us Σ; • ⊢ Γ ≲ Γ1. Then, applying
Lemma E.9 to the typing derivation (from T-BorrowSlice)
for 𝑒2 (which we know is a value from E-BorrowSlice)
gives us Σ; • ⊢ Γ1 ≲ Γ2. Then, by transitivity, we have
Σ; • ⊢ Γ ≲ Γ2.
Then, applying Lemma E.23 to Σ; • ⊢ Γ ≲ Γ2 and Σ ⊢ 𝜎 : Γ
(from premise) gives us Σ ⊢ 𝜎 : Γ2. Finally, applying
Lemma E.22 to Σ ⊢ 𝜎 : Γ2 gives us Σ ⊢ 𝜎 : Γ2 [𝑟 ↦→ { ℓ }].

Σ; •; Γ𝑖 ⊢ ptr R[𝑛1 ..𝑛2] : &𝑟 𝜔 [𝜏si] ⇒ Γ𝑖 Applying Lemma E.9 to the typing derivation (from T-
BorrowSlice) for 𝑒1 (which we know is a value from E-
BorrowSlice) gives us Σ; • ⊢ Γ ≲ Γ1. Then, applying
Lemma E.9 to the typing derivation (from T-BorrowSlice)
for 𝑒2 (which we know is a value from E-BorrowSlice)
gives us Σ; • ⊢ Γ1 ≲ Γ2. Then, by transitivity, we have
Σ; • ⊢ Γ ≲ Γ2.
Then, applying Lemma E.23 to Σ; • ⊢ Γ ≲ Γ2 and Σ ⊢ 𝜎 : Γ
(from premise) gives us Σ ⊢ 𝜎 : Γ2.
Applying Lemma E.5 to Σ ⊢ 𝜎 : Γ2, and 𝜎 ⊢ 𝑝 ⇓ R ↦→
[𝑣0 , . . . , 𝑣𝑛] gives us Σ; Γ2 ⊢ R□ [𝜋] : 𝜏xi. Then, note
that referent well-formedness does not depend on the
contents of loan sets. This means we can also conclude
Σ; Γ2 [𝑟 ↦→ { ℓ }] ⊢ R□ [𝜋] : 𝜏xi. We can then apply
WF-RefSliceArray or WF-RefSliceSlice to get Σ; Γ′[𝑟 ↦→
{ ℓ }] ⊢ R□ [𝜋] [𝑛1 ..𝑛2] : 𝜏xi.
Applying Lemma E.6 to Σ ⊢ 𝜎 : Γ2, 𝜎 ⊢ 𝑝 ⇓ R ↦→
[𝑣0 , . . . , 𝑣𝑛], and •; Γ2 ⊢𝜔 𝑝 ⇒ { ℓ } gives us 𝜔𝜋 ∈ { ℓ }.
Finally, we can apply T-Pointer to the two facts above to
get Σ; •; Γ [𝑟 ↦→ { ℓ }] ⊢ ptr R[𝜋] [𝑛1 ..𝑛2] : &𝑟 𝜔 𝜏xi ⇒
Γ [𝑟 ↦→ { ℓ }].

•; Γ𝑖 ⊢ &𝑟 𝜔 [𝜏si] ≲ &𝑟 𝜔 [𝜏si] ⇒ Γ𝑖 Immediate by S-Refl.
∃Γ𝑜 .Γ𝑖 ⋓ Γ𝑜 = Γ𝑖 Γ𝑜 = Γ𝑖

For E-BorrowSliceOOB, we pick Γ𝑖 to be Γ , and need to show:

Σ ⊢ 𝜎 : Γ This is given as an assumption.
Σ; •; Γ ⊢ abort!(. . .) : &𝑟 𝜔 [𝜏si] ⇒ Γ′ An abort! expression is well-typed (at any type) via the

rule T-Abort.
•; Γ ⊢ &𝑟 𝜔 [𝜏si] ≲ &𝑟 𝜔 [𝜏si] ⇒ Γ Immediate by S-Refl.

∃Γ𝑜 .Γ𝑖 ⋓ Γ𝑜 = Γ𝑖 Γ𝑜 = Γ𝑖

Case T-IndexCopy:

Oxide: The Essence of Rust 1:75

From premise:

T-IndexCopy
Σ; Δ; Γ ⊢ 𝑒 : u32 ⇒ Γ′ Δ; Γ′ ⊢shrd 𝑝 ⇒ { ℓ }

copyableΣ 𝜏
si Δ; Γ′ ⊢shrd 𝑝 : 𝜏xi 𝜏xi = [𝜏si; 𝑛] ∨ 𝜏xi = [𝜏si]

Σ; Δ; Γ ⊢ 𝑝 [𝑒] : 𝜏si ⇒ Γ′

Since 𝑒 = 𝑝 [𝑒𝑖], by inspection of the reduction rules, we know that 𝑒 steps with the following rule:

E-IndexCopy
𝜎 ⊢ 𝑝 ⇓ _ ↦→ [𝑣0 , . . . , 𝑣𝑛𝑖 , . . . , 𝑣𝑛]

Σ ⊢ (𝜎 ; 𝑝 [𝑛𝑖]) → (𝜎 ; 𝑣𝑛𝑖)

We then pick Γ𝑖 to be Γ′ , and need to show:

Σ ⊢ 𝜎 : Γ′ Applying Lemma E.9 to the typing derivation (from T-IndexCopy) for 𝑒
(which we know is a value from E-IndexCopy) gives us Σ; • ⊢ Γ ≲ Γ′.
Then, applying Lemma E.23 to Σ; • ⊢ Γ ≲ Γ′ and Σ ⊢ 𝜎 : Γ (from premise)
gives us Σ ⊢ 𝜎 : Γ′.

Σ; •; Γ′ ⊢ 𝑣𝑛𝑖 : 𝜏si ⇒ Γ′ Applying Lemma E.9 to the typing derivation (from T-IndexCopy) for 𝑒
(which we know is a value from E-IndexCopy) gives us Σ; • ⊢ Γ ≲ Γ′.
Then, applying Lemma E.23 to Σ; • ⊢ Γ ≲ Γ′ and Σ ⊢ 𝜎 : Γ (from premise)
gives us Σ ⊢ 𝜎 : Γ′.
Applying Lemma E.3 to •; Γ′ ⊢shrd 𝑝 ⇒ { ℓ }, •; Γ′ ⊢shrd 𝑝 : 𝜏si, and
Σ ⊢ 𝜎 : Γ′ T-Slice (based on whether 𝜏xi = [𝜏si; 𝑛] or [𝜏si] respectively),
we get ∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ′ ⊢ 𝑣𝑖 : 𝜏si ⇒ Γ′ (after accounting
for the fact that the constituent expressions are values and the output
environment matches the input environment). Thus, we can pick out
specifically that Σ; Δ; Γ′ ⊢ 𝑣𝑖 : 𝜏si ⇒ Γ′.

•; Γ′ ⊢ 𝜏si ≲ 𝜏si ⇒ Γ′ Immediate by S-Refl.
∃Γ𝑜 .Γ′ ⋓ Γ𝑜 = Γ′ Γ𝑜 = Γ′

Case T-Seq:

From premise:

T-Seq
Σ; Δ; Γ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1

Σ; Δ; gc-loans(Γ1) ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ ⊢ 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

Since 𝑒 = 𝑒1; 𝑒2, by inspection of the reduction rules, we know that 𝑒 steps with the following rule:

E-Seq

Σ ⊢ (𝜎 ; 𝑣; 𝑒) → (𝜎 ; 𝑒)

We then pick Γ𝑖 to be gc-loans(Γ1) , and need to show:

1:76 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Σ ⊢ 𝜎 : gc-loans(Γ1) Applying Lemma E.9 to the typing derivation (from T-Seq) for 𝑒1
(which we know is a value from E-Seq) gives us Σ; • ⊢ Γ ≲ Γ1.
Applying Lemma E.23 with this and Σ ⊢ 𝜎 : Γ (from premise)
gives us Σ ⊢ 𝜎 : Γ1. Then, applying Lemma E.28 gives us Σ ⊢ 𝜎 :
gc-loans(Γ1).

Σ; •; gc-loans(Γ1) ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 Immediate from the premise of T-Seq.
•; Γ2 ⊢ 𝜏si2 ≲ 𝜏si2 ⇒ Γ2 Immediate by S-Refl.
∃Γ𝑜 .Γ2 ⋓ Γ𝑜 = Γ2 Γ𝑜 = Γ2

Case T-Branch:

From premise:

T-Branch
Σ; Δ; Γ ⊢ 𝑒1 : bool ⇒ Γ1 Σ; Δ; Γ1 ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ1 ⊢ 𝑒3 : 𝜏si3 ⇒ Γ3 𝜏si = 𝜏si2 ∨ 𝜏si = 𝜏si3
Δ; Γ2 ⊢ 𝜏si2 ≲ 𝜏si ⇒ Γ′2 Δ; Γ3 ⊢ 𝜏si3 ≲ 𝜏si ⇒ Γ′3 Γ′2 ⋓ Γ′3 = Γ′

Σ; Δ; Γ ⊢ if 𝑒1 { 𝑒2 } else { 𝑒3 } : 𝜏si ⇒ Γ′

Since 𝑒 = if 𝑒1 { 𝑒2 } else { 𝑒3 } , by inspection of the reduction rules, we know that 𝑒 steps with
the following rule:

E-IfTrue

Σ ⊢ (𝜎 ; if true { 𝑒1 } else { 𝑒2 }) → (𝜎 ; 𝑒1)

E-IfFalse

Σ ⊢ (𝜎 ; if false { 𝑒1 } else { 𝑒2 }) → (𝜎 ; 𝑒2)

Then, for each possible rule, we’ll pick Γ𝑖 separately. The cases proceed as follows:
For E-IfTrue, we pick Γ𝑖 to be Γ1 , and need to show:

Σ ⊢ 𝜎 : Γ1 Applying Lemma E.9 to the typing derivation (from T-Branch) for 𝑒1
(which we know is a value from E-IfTrue) gives us Σ; • ⊢ Γ ≲ Γ1. Then,
applying Lemma E.23 with this and Σ ⊢ 𝜎 : Γ (from premise) gives us
Σ ⊢ 𝜎 : Γ1.

Σ; •; Γ1 ⊢ 𝑒2 : 𝜏si ⇒ Γ2 Immediate from premise of T-Branch.
•; Γ2 ⊢ 𝜏si2 ≲ 𝜏si2 ⇒ Γ′2 Immediate from premise of T-Branch.
∃Γ𝑜 .Γ′2 ⋓ Γ𝑜 = Γ′ Γ𝑜 = Γ′3

For E-IfFalse, we pick Γ𝑖 to be Γ1 , and need to show:

Σ ⊢ 𝜎 : Γ1 Applying Lemma E.9 to the typing derivation (from T-Branch) for 𝑒1
(which we know is a value from E-IfFalse) gives us Σ; • ⊢ Γ ≲ Γ1. Then,
applying Lemma E.23 with this and Σ ⊢ 𝜎 : Γ (from premise) gives us
Σ ⊢ 𝜎 : Γ1.

Σ; •; Γ1 ⊢ 𝑒3 : 𝜏si3 ⇒ Γ3 Immediate from premise of T-Branch.
•; Γ3 ⊢ 𝜏si3 ≲ 𝜏si ⇒ Γ′3 Immediate from premise of T-Branch.
∃Γ𝑜 .Γ′3 ⋓ Γ𝑜 = Γ′ Γ𝑜 = Γ′2 (note that ⋓ commutes)

Case T-Assign:

Oxide: The Essence of Rust 1:77

From premise:

T-Assign
Σ; Δ; Γ ⊢ 𝑒 : 𝜏si ⇒ Γ1 Γ1 (𝜋) = 𝜏sx

(𝜏sx = 𝜏sd ∨ Δ; Γ1 ⊢uniq 𝜋 ⇒ { uniq𝜋 })
Δ; Γ1 ⊢ 𝜏si ≲ 𝜏sx ⇒ Γ′

Σ; Δ; Γ ⊢ 𝜋 ≔ 𝑒 : unit ⇒ Γ′ [𝜋 ↦→ 𝜏si] ▷− 𝜋

Since 𝑒 = 𝜋 ≔ 𝑒𝑎 , by inspection of the reduction rules, we know that 𝑒 steps with the following
rule:

E-Assign
𝜎 ⊢ 𝑝 ⇓ V 𝑝 = 𝑝□ [𝑥]

Σ ⊢ (𝜎 ; 𝑝 ≔ 𝑣) → (𝜎 [𝑥 ↦→ V [𝑣]]; ())

We then pick Γ𝑖 to be Γ′[𝜋 ↦→ 𝜏si] ▷− 𝜋 , and need to show:

Σ ⊢ 𝜎 [𝜋 ↦→ V [𝑣]] : Γ′ [𝜋 ↦→ 𝜏si] ▷− 𝜋 Applying Lemma E.27 to Σ ⊢ 𝜎 : Γ (from
our premise), Σ; •; Γ ⊢ 𝑣 : 𝜏si ⇒ Γ1 (from
premise of T-Assign and knowledge that 𝑒 is a
value from E-Assign), •; Γ1 ⊢uniq 𝜋 : 𝜏sx (im-
mediate by TC-Place on Γ1 (𝜋) = 𝜏sx), •; Γ1 ⊢
𝜏si ≲ 𝜏sx ⇒ Γ′ (from premise of T-Assign),
𝜎 ⊢ 𝜋 ⇓ V (from premise of E-Assign), and
𝜏sx = 𝜏sd ∨ •; Γ1 ⊢uniq 𝜋 ⇒ { uniq𝜋 } (from
premise of T-Assign) gives us Σ ⊢ 𝜎 [𝑥 ↦→
V[𝑣]] : Γ′[𝜋 ↦→ 𝜏si] ▷− 𝜋 .

Σ; •; Γ′ [𝜋 ↦→ 𝜏si] ▷− 𝜋 ⊢ () : unit ⇒ Γ′ [𝜋 ↦→ 𝜏si] ▷− 𝜋 Immediate by T-Unit.
•; Γ′ [𝜋 ↦→ 𝜏si] ▷− 𝜋 ⊢ unit ≲ unit ⇒ Γ′ [𝜋 ↦→ 𝜏si] ▷− 𝜋 Immediate by S-Refl.

∃Γ𝑜 .Γ′ [𝜋 ↦→ 𝜏si] ▷− 𝜋 ⋓ Γ𝑜 = Γ′ [𝜋 ↦→ 𝜏si] ▷− 𝜋 Γ𝑜 = Γ′[𝜋 ↦→ 𝜏si] ▷− 𝜋

Case T-AssignDeref:

From premise:

T-AssignDeref
Σ; Δ; Γ ⊢ 𝑒 : 𝜏si𝑛 ⇒ Γ1 Δ; Γ1 ⊢uniq 𝑝 : 𝜏si𝑜

Δ; Γ1 ⊢uniq 𝑝 ⇒ { ℓ } Δ; Γ1 ⊢ 𝜏si𝑛 ≲ 𝜏si𝑜 ⇒ Γ′

Σ; Δ; Γ ⊢ 𝑝 ≔ 𝑒 : unit ⇒ Γ′ ▷− 𝑝

Since 𝑒 = 𝑝 ≔ 𝑒𝑎 , by inspection of the reduction rules, we know that 𝑒 steps with the following
rule:

E-Assign
𝜎 ⊢ 𝑝 ⇓ V 𝑝 = 𝑝□ [𝑥]

Σ ⊢ (𝜎 ; 𝑝 ≔ 𝑣) → (𝜎 [𝑥 ↦→ V [𝑣]]; ())

We then pick Γ𝑖 to be Γ′ ▷− 𝑝 , and need to show:

1:78 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Σ ⊢ 𝜎 [𝜋 ↦→ V [𝑣]] : Γ′ ▷− 𝑝 Applying Lemma E.27 to Σ ⊢ 𝜎 : Γ (from our premise), Σ; •; Γ ⊢
𝑣 : 𝜏si ⇒ Γ1 (from premise of T-AssignDeref and knowledge
that 𝑒 is a value from E-Assign), •; Γ1 ⊢uniq 𝑝 : 𝜏sx (from premise
of T-AssignDeref), •; Γ1 ⊢ 𝜏si ≲ 𝜏sx ⇒ Γ′ (from premise of
T-AssignDeref), 𝜎 ⊢ 𝑝 ⇓ V (from premise of E-Assign), and
•; Γ1 ⊢uniq 𝑝 ⇒ { uniq𝜋 } (from premise of T-AssignDeref) gives
us Σ ⊢ 𝜎 [𝑥 ↦→ V[𝑣]] : Γ′ ▷− 𝑝 .

Σ; •; Γ′ ▷− 𝑝 ⊢ () : unit ⇒ Γ′ ▷− 𝑝 Immediate by T-Unit.
•; Γ′ ▷− 𝑝 ⊢ unit ≲ unit ⇒ Γ′ ▷− 𝑝 Immediate by S-Refl.

∃Γ𝑜 .Γ′ ▷− 𝑝 ⋓ Γ𝑜 = Γ′ ▷− 𝑝 Γ𝑜 = Γ′ ▷− 𝑝

Case T-Let:

From premise:

T-Let
Σ; Δ; Γ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1 Δ; Γ1 ⊢ 𝜏si1 ≲ 𝜏si𝑎 ⇒ Γ′1

Σ; Δ; gc-loans(Γ′1 , 𝑥 : 𝜏si𝑎) ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 , 𝑥 : 𝜏sd

Σ; Δ; Γ ⊢ let 𝑥 : 𝜏si𝑎 = 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

Since 𝑒 = let 𝑥 : 𝜏si = 𝑒1; 𝑒2, by inspection of the reduction rules, we know that 𝑒 steps with the
following rule:

E-Let

Σ ⊢ (𝜎 ; let 𝑥 : 𝜏si𝑎 = 𝑣; 𝑒) → (𝜎 , 𝑥 ↦→ 𝑣; shift 𝑒)

We then pick Γ𝑖 to be gc-loans(Γ′1 , 𝑥 : 𝜏si𝑎) , and need to show:

Σ ⊢ 𝜎 , 𝑥 ↦→ 𝑣 : gc-loans(Γ′1 , 𝑥 : 𝜏si𝑎) Applying Lemma E.9 to the typing derivation (from
T-Let) for 𝑒1 (which we know is a value from E-
Let) gives us Σ; • ⊢ Γ ≲ Γ1. Then, we can ap-
ply Lemma E.23 to get Σ ⊢ 𝜎 : Γ1. Then, applying
Lemma E.8 to •; Γ1 ⊢ 𝜏si1 ≲ 𝜏si𝑎 ⇒ Γ′1 (from premise
of T-Let) gives us Σ ⊢ 𝜎 : Γ′1 . We can also apply
Lemma E.26 to Σ; Δ; Γ ⊢ 𝑣 : 𝜏si1 ⇒ Γ1 (from premise
of T-Let) and Δ; Γ1 ⊢ 𝜏si1 ≲ 𝜏si𝑎 ⇒ Γ′1 (from premise
of T-Let) gives us Σ; Δ; Γ′ ⊢ 𝑒1 : 𝜏si𝑎 ⇒ Γ′

Then, apply Lemma E.25 to Σ ⊢ 𝜎 : Γ′1 and Σ; Δ; Γ′ ⊢
𝑒1 : 𝜏si𝑎 ⇒ Γ′ gives us Σ ⊢ 𝜎 , 𝑥 ↦→ 𝑣 : Γ′1 , 𝑥 : 𝜏si𝑎 . We
can then apply Lemma E.28 to conclude Σ ⊢ 𝜎 , 𝑥 ↦→
𝑣 : gc-loans(Γ′1 , 𝑥 : 𝜏si𝑎).

Σ; •; gc-loans(Γ′1 , 𝑥 : 𝜏si𝑎) ⊢ shift 𝑒 : 𝜏si2 ⇒ Γ2 Immediate by applying T-Shift to the derivation
Σ; •; gc-loans(Γ′1 , 𝑥 : 𝜏si𝑎) ⊢ 𝑒 : 𝜏si2 ⇒ Γ2 , 𝑥 : 𝜏sd
(from premise of T-Let).

•; Γ2 ⊢ 𝜏si2 ≲ 𝜏si2 ⇒ Γ2 Immediate by S-Refl.
∃Γ𝑜 .Γ2 ⋓ Γ𝑜 = Γ2 Γ𝑜 = Γ2

Case T-LetProv:

Oxide: The Essence of Rust 1:79

From premise:

T-LetProv
Σ; Δ; Γ , 𝑟 ↦→ {} ⊢ 𝑒 : 𝜏si ⇒ Γ′ , 𝑟 ↦→ {ℓ }

Σ; Δ; Γ ⊢ letprov <𝑟> { 𝑒 } : 𝜏si ⇒ Γ′

Since 𝑒 = letprov <𝑟> { 𝑒 } , by inspection of the reduction rules, we know that 𝑒 steps with the
following rule:

E-LetProv

Σ ⊢ (𝜎 ; letprov <𝑟> { 𝑣 }) → (𝜎 ; 𝑣)

We then pick Γ𝑖 to be Γ′ , and need to show:

Σ ⊢ 𝜎 : Γ′ Applying Lemma E.9 to the typing derivation (from T-LetProv) for 𝑒 (which
we know is a value from E-LetProv) gives us Σ; • ⊢ Γ ≲ Γ′. Then, applying
Lemma E.23 with this and Σ ⊢ 𝜎 : Γ (from premise) gives us Σ ⊢ 𝜎 : Γ′.

Σ; •; Γ′ ⊢ 𝑣 : 𝜏si ⇒ Γ′ Weknow from E-LetProv that 𝑒 is a value 𝑣 . Thus, we can apply Lemma E.21
to Σ; •; Γ ⊢ 𝑣 : 𝜏si ⇒ Γ′ , 𝑟 ↦→ { ℓ } to get Σ; •; Γ′ , 𝑟 ↦→ { ℓ } ⊢ 𝑣 :
𝜏si ⇒ Γ′ , 𝑟 ↦→ { ℓ }.
We now wish to show that Σ; •; Γ′ ⊢ 𝑣 : 𝜏si ⇒ Γ′. By inspecting
the grammar of values and their typing rules, we know that the only
values who depend on the context are pointers and closure values. But
by inversion on Σ; •; Γ ⊢ letprov <𝑟> { 𝑣 } : 𝜏si ⇒ Γ′, we know
that Σ; •; Γ′ ⊢ 𝜏si. Since the type is valid without the frame, we know
that the values cannot depend on that frame. Thus, we can conclude
Σ; •; Γ′ ⊢ 𝑣 : 𝜏si ⇒ Γ′.

•; Γ′ ⊢ 𝜏si ≲ 𝜏si ⇒ Γ′ Immediate by S-Refl.
∃Γ𝑜 .Γ′ ⋓ Γ𝑜 = Γ′ Γ𝑜 = Γ′

Case T-While:

From premise:

T-While
Σ; Δ; Γ ⊢ 𝑒1 : bool ⇒ Γ1 Σ; Δ; Γ1 ⊢ 𝑒2 : unit ⇒ Γ2

Σ; Δ; Γ2 ⊢ 𝑒1 : bool ⇒ Γ2 Σ; Δ; Γ2 ⊢ 𝑒2 : unit ⇒ Γ2

Σ; Δ; Γ ⊢ while 𝑒1 { 𝑒2 } : unit ⇒ Γ2

Since 𝑒 = while 𝑒1 { 𝑒2 } , by inspection of the reduction rules, we know that 𝑒 steps with the
following rule:

E-While

Σ ⊢ (𝜎 ; while 𝑒1 { 𝑒2 }) → (𝜎 ; if 𝑒1 { 𝑒2; while 𝑒1 { 𝑒2 } } else { () })

We then pick Γ𝑖 to be Γ , and need to show:

1:80 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Σ ⊢ 𝜎 : Γ Immediate from our premise.
Σ; •; Γ ⊢ 𝑒′ : unit ⇒ Γ2 We would like to build a derivation to show that the expression

if 𝑒1 { 𝑒2; while 𝑒1 { 𝑒2 } } else { () } is well-typed. We thus start by
applying T-Branch.
This requires us to show three things. First, Σ; •; Γ ⊢ 𝑒1 : bool ⇒
Γ1 which we have from the premise of T-While. Second, Σ; •; Γ1 ⊢
𝑒2; while 𝑒1 { 𝑒2 } : unit ⇒ Γ2. We build this by applying T-Seq to

Σ; •; Γ1 ⊢ 𝑒2 : unit ⇒ Γ2 and Σ; •; Γ2 ⊢ while 𝑒1 { 𝑒2 } : Γ2 ⇒
. The former is directly in the premise of T-While and the latter can
be built by applying T-While to Σ; Δ; Γ2 ⊢ 𝑒1 : bool ⇒ Γ2 and
Σ; Δ; Γ2 ⊢ 𝑒2 : unit ⇒ Γ2, both from the premise of our original

T-While. Finally, we need to show Σ; Δ; Γ2 ⊢ () : unit ⇒ Γ2, which is
immediate from T-Unit.

•; Γ2 ⊢ unit ≲ unit ⇒ Γ2 Immediate by S-Refl.
∃Γ𝑜 .Γ2 ⋓ Γ𝑜 = Γ2 Γ𝑜 = Γ2

Case T-ForArray:

From premise:

T-ForArray
Σ; Δ; Γ ⊢ 𝑒1 : [𝜏si; 𝑛] ⇒ Γ1

Σ; Δ; Γ1 , 𝑥 : 𝜏si ⊢ 𝑒2 : unit ⇒ Γ1 , 𝑥 : 𝜏sd

Σ; Δ; Γ ⊢ for 𝑥 in 𝑒1 { 𝑒2 } : unit ⇒ Γ1

Since 𝑒 = for 𝑥 in 𝑒1 { 𝑒2 } , by inspection of the reduction rules, we know that 𝑒 steps with the
following rule:

E-ForArray

Σ ⊢ (𝜎 ; for 𝑥 in [𝑣0 , . . . , 𝑣𝑛] { 𝑒 }) → (𝜎 , 𝑥 ↦→ 𝑣0; shift 𝑒 ; for 𝑥 in [𝑣1 , . . . , 𝑣𝑛] { 𝑒 })

E-ForEmptyArray

Σ ⊢ (𝜎 ; for 𝑥 in [] { 𝑒 }) → (𝜎 ; ())

Then, for each possible rule, we’ll pick Γ𝑖 separately. The cases proceed as follows:
For E-ForArray, we pick Γ𝑖 to be Γ1 , 𝑥 : 𝜏si , and need to show:

Oxide: The Essence of Rust 1:81

Σ ⊢ 𝜎 , 𝑥 ↦→ 𝑣0 : Γ1 , 𝑥 : 𝜏si Applying Lemma E.9 to the typing derivation (from T-ForArray)
for 𝑒1 (which we know is a value from E-ForArray) gives us
Σ; • ⊢ Γ ≲ Γ1. Then, we can apply Lemma E.23 to get Σ ⊢ 𝜎 : Γ1.
Applying Lemma E.21 to the derivation Σ; •; Γ ⊢ [𝑣0 , . . . , 𝑣𝑛] :

[𝜏si; 𝑛] ⇒ Γ1 gives us Σ; •; Γ1 ⊢ [𝑣0 , . . . , 𝑣𝑛] : [𝜏si; 𝑛] ⇒ Γ1.
Then, using inversion (of T-Array), we get Σ; •; Γ1 ⊢ 𝑣0 : 𝜏si ⇒
Γ1. Finally, applying Lemma E.25 to Σ ⊢ 𝜎 : Γ1 and Σ; Δ; Γ1 ⊢
𝑣0 : 𝜏si ⇒ Γ1 gives us Σ ⊢ 𝜎 , 𝑥 ↦→ 𝑣0 : Γ1 , 𝑥 : 𝜏si.

Σ; •; Γ1 , 𝑥 : 𝜏si ⊢ 𝑒′ : unit ⇒ Γ1 We need to build a derivation for the expression
shift 𝑒; for 𝑥 in [𝑣1 , . . . , 𝑣𝑛] { 𝑒 } . The bottom of this
derivation will be T-Seq which requires us to show that
Σ; •; Γ1 , 𝑥 : 𝜏si ⊢ shift 𝑒 : unit ⇒ Γ1 and that
Σ; •; Γ1 ⊢ for 𝑥 in [𝑣1 , . . . , 𝑣𝑛] { 𝑒 } : unit ⇒ Γ1.

To show Σ; •; Γ1 , 𝑥 : 𝜏si ⊢ shift 𝑒 : unit ⇒ Γ1, we apply
T-Shift to Σ; •; Γ1 , 𝑥 : 𝜏si ⊢ 𝑒 : unit ⇒ Γ1 , 𝑥 : 𝜏sd (from the
premise of T-ForArray).
To show Σ; •; Γ1 ⊢ for 𝑥 in [𝑣1 , . . . , 𝑣𝑛] { 𝑒 } : unit ⇒ Γ1,

we apply Lemma E.21 to the derivation Σ; •; Γ ⊢ [𝑣0 , . . . , 𝑣𝑛] :

[𝜏si; 𝑛] ⇒ Γ1 to get Σ; •; Γ1 ⊢ [𝑣0 , . . . , 𝑣𝑛] : [𝜏si; 𝑛] ⇒ Γ1.
Then, we rewrite the derivation (inverting and then reapply T-
Array) to exclude 𝑣0 giving us Σ; •; Γ1 ⊢ [𝑣1 , . . . , 𝑣𝑛] : [𝜏si; 𝑛−
1] ⇒ Γ1. Finally, we apply T-ForArray using this combined with
Σ; •; Γ1 ⊢ 𝑒 : unit ⇒ Γ1 (from the premise of T-ForArray).

•; Γ1 ⊢ unit ≲ unit ⇒ Γ1 Immediate by S-Refl.
∃Γ𝑜 .Γ1 ⋓ Γ𝑜 = Γ1 Γ𝑜 = Γ1

For E-ForEmptyArray, we pick Γ𝑖 to be Γ , and need to show:

Σ ⊢ 𝜎 : Γ Immediate from our premise.
Σ; •; Γ ⊢ () : unit ⇒ Γ Immediate by T-Unit.
•; Γ ⊢ unit ≲ unit ⇒ Γ Immediate by S-Refl.

∃Γ𝑜 .Γ ⋓ Γ𝑜 = Γ Γ𝑜 = Γ

Case T-ForSlice:

1:82 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

From premise:

T-ForSlice
Σ; Δ; Γ ⊢ 𝑒1 : &𝜌 𝜔 [𝜏si] ⇒ Γ1

Σ; Δ; Γ1 , 𝑥 : &𝜌 𝜔 𝜏si ⊢ 𝑒2 : unit ⇒ Γ1 , 𝑥 : 𝜏sx1

Σ; Δ; Γ ⊢ for 𝑥 in 𝑒1 { 𝑒2 } : unit ⇒ Γ2

Since 𝑒 = for 𝑥 in 𝑒1 { 𝑒2 } , by inspection of the reduction rules, we know that 𝑒 steps with the
following rule:

E-ForSlice
𝜎 ⊢ R ⇓ _ ↦→ [𝑣1 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛] 𝑖 < 𝑗 𝑖′ = 𝑖 + 1

Σ ⊢ (𝜎 ; for 𝑥 in ptr R[𝑖 .. 𝑗] { 𝑒 }) → (𝜎 , 𝑥 ↦→ ptr R[𝑖]; shift 𝑒 ; for 𝑥 in ptr R[𝑖′.. 𝑗] { 𝑒 })

E-ForEmptySlice

Σ ⊢ (𝜎 ; for 𝑥 in ptr 𝜋 [𝑛..𝑛] { 𝑒 }) → (𝜎 ; ())

Then, for each possible rule, we’ll pick Γ𝑖 separately. The cases proceed as follows:
For E-ForSlice, we pick Γ𝑖 to be Γ1 , 𝑥 : &𝑟 𝜔 𝜏si , and need to show:

Oxide: The Essence of Rust 1:83

Σ ⊢ 𝜎 , 𝑥 ↦→ ptr R[𝑛1] : Γ1 , 𝑥 : &𝑟 𝜔 𝜏si Applying Lemma E.9 to the typing derivation (from T-
ForSlice) for 𝑒1 (which we know is a value from E-ForSlice)
gives us Σ; • ⊢ Γ ≲ Γ1. Then, we can apply Lemma E.23
to get Σ ⊢ 𝜎 : Γ1. Applying Lemma E.21 to the derivation
Σ; •; Γ ⊢ ptr R[𝑖 .. 𝑗] : &𝑟 𝜔 [𝜏si] ⇒ Γ1 gives us Σ; •; Γ1 ⊢
ptr R[𝑖 .. 𝑗] : &𝑟 𝜔 [𝜏si] ⇒ Γ1. Then, using inversion (on
T-Pointer), we get Σ; Γ1 ⊢ R[𝑖 .. 𝑗] : 𝜏xi (where 𝜏xi = [𝜏si; 𝑛]
or [𝜏si]) and 𝜔𝜋 ∈ Γ1 (𝑟) (where R = R□ [𝜋]). We can in-
vert WF-RefSliceArray or WF-RefSliceSlice (based on 𝜏xi)
for Σ; Γ1 ⊢ R[𝑖 .. 𝑗] : 𝜏xi and then apply WF-RefIndexArray
or WF-RefIndexSlice appropriately to get Σ; Γ1 ⊢ R[𝑖] : 𝜏xi.
We can then use T-Pointer to get Σ; •; Γ1 ⊢ ptr R[𝑛1] :
&𝑟 𝜔 𝜏si ⇒ Γ1. Finally, applying Lemma E.25 to Σ ⊢ 𝜎 : Γ1
and Σ; Δ; Γ1 ⊢ ptr R[𝑛1] : &𝑟 𝜔 𝜏si ⇒ Γ1 gives us
Σ ⊢ 𝜎 , 𝑥 ↦→ ptr R[𝑛1] : Γ1 , 𝑥 : &𝑟 𝜔 𝜏si.

Σ; •; Γ1 , 𝑥 : &𝑟 𝜔 𝜏si ⊢ 𝑒′ : unit ⇒ Γ1 We need to build a derivation for the expression
shift 𝑒; for 𝑥 in ptr R[𝑛′

1 ..𝑛2] { 𝑒 } . The bottom of
this derivation will be T-Seq which requires us to show
that Σ; •; Γ1 , 𝑥 : 𝜏si ⊢ shift 𝑒 : unit ⇒ Γ1 and that
Σ; •; Γ1 ⊢ for 𝑥 in ptr R[𝑛′

1 ..𝑛2] { 𝑒 } : unit ⇒ Γ1.

To show Σ; •; Γ1 , 𝑥 : 𝜏si ⊢ shift 𝑒 : unit ⇒ Γ1, we
apply T-Shift to Σ; •; Γ1 , 𝑥 : 𝜏si ⊢ 𝑒 : unit ⇒ Γ1 , 𝑥 : 𝜏sd
(from the premise of T-ForSlice).
To show Σ; •; Γ1 ⊢ for 𝑥 in ptr R[𝑛′

1..𝑛2] { 𝑒 } :
unit ⇒ Γ1, we apply Lemma E.21 to the derivation
Σ; •; Γ ⊢ ptr R[𝑛1..𝑛2] : &𝑟 𝜔 [𝜏si] ⇒ Γ1 to get Σ; •; Γ1 ⊢
ptr R[𝑛1..𝑛2] : &𝑟 𝜔 [𝜏si] ⇒ Γ1. Then, we rewrite the
derivation (inverting and then reapply T-Pointer) to in-
crement 𝑛1 to 𝑛′

1 giving us Σ; •; Γ1 ⊢ ptr R[𝑛′
1..𝑛2] :

&𝑟 𝜔 [𝜏si] ⇒ Γ1. Finally, we apply T-ForSlice using this com-
bined with Σ; •; Γ1 ⊢ 𝑒 : unit ⇒ Γ1 (from the premise of
T-ForSlice).

•; Γ1 ⊢ unit ≲ unit ⇒ Γ1 Immediate by S-Refl.
∃Γ𝑜 .Γ1 ⋓ Γ𝑜 = Γ1 Γ𝑜 = Γ1

For E-ForEmptySlice, we pick Γ𝑖 to be Γ , and need to show:

Σ ⊢ 𝜎 : Γ Immediate from our premise.
Σ; •; Γ ⊢ () : unit ⇒ Γ Immediate by T-Unit.
•; Γ ⊢ unit ≲ unit ⇒ Γ Immediate by S-Refl.

∃Γ𝑜 .Γ ⋓ Γ𝑜 = Γ Γ𝑜 = Γ

Case T-App:

1:84 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

From premise:

T-App
Σ; Δ; Γ ⊢ Φ Δ; Γ ⊢ 𝜌 Σ; Δ; Γ ⊢ 𝜏si

Σ; Δ; Γ ⊢ 𝑒𝑓 : ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛) Φ𝑐→ 𝜏si
𝑓
where 𝜚1 : 𝜚2 ⇒ Γ0

∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 [Φ/𝜑] [𝜌/𝜚] [𝜏si/𝛼] ⇒ Γ𝑖 Δ; Γ𝑛 ⊢ 𝜚2 [𝜌/𝜚] :> 𝜚1 [𝜌/𝜚] ⇒ Γ𝑏

Σ; Δ; Γ ⊢ 𝑒𝑓 ::<Φ , 𝜌 , 𝜏si> (𝑒1 , . . . , 𝑒𝑛) : 𝜏si
𝑓
[Φ/𝜑] [𝜌/𝜚] [𝜏si/𝛼] ⇒ Γ𝑏

Since 𝑒 = 𝑒𝑓 ::<𝜌 ′ , 𝜏si>(𝑒1 , . . . , 𝑒𝑛), by inspection of the reduction rules, we know that 𝑒 steps
with the following rule:

E-AppClosure
𝑣𝑓 = ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩

Σ ⊢ (𝜎 ; 𝑣𝑓 (𝑣1 , . . . , 𝑣𝑛)) → (𝜎 ♮ 𝜍𝑐 , 𝑥1 ↦→ 𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 ; framed 𝑒)

E-AppFunction
Σ(𝑓) = fn 𝑓 <𝜑 , 𝜚 , 𝛼> (𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛) → 𝜏s𝑟 where 𝜚 : 𝜚 ′ { 𝑒 }

Σ ⊢ (𝜎 ; 𝑓 ::<Φ , 𝑟 ′ , 𝜏s> (𝑣1 , . . . , 𝑣𝑛)) → (𝜎 ♮ 𝑥1 ↦→ 𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 ; framed 𝑒 [Φ/𝜑] [𝑟 ′/𝜚] [𝜏
s/𝛼])

Then, for each possible rule, we’ll pick Γ𝑖 separately. The cases proceed as follows:
For E-AppClosure, we pick Γ𝑖 to be Γ𝑏 ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 , and need to show:

Oxide: The Essence of Rust 1:85

Σ ⊢ 𝜎′ : Γ𝑖 Applying Lemma E.9 to the derivation for 𝑣 𝑓 gives us Σ; • ⊢ Γ ≲ Γ0.
Then, applying Lemma E.9 to the derivations for every 𝑣𝑖 gives us ∀𝑖 ∈
{ 1 . . . 𝑛 }. Σ; • ⊢ Γ𝑖−1 ≲ Γ𝑖 . By transitivity, we then have Σ; • ⊢ Γ ≲ Γ𝑛 .
Since the function being applied is a closure, we know syntactically that
it does not have where bounds, and thus Γ𝑏 = Γ𝑛 . Thus, we can rewrite
this to be Σ; • ⊢ Γ ≲ Γ𝑏 .
We can then apply Lemma E.23 with Σ ⊢ 𝜎 : Γ to get Σ ⊢ 𝜎 : Γ𝑏 .
Then, inversion of T-ClosureValue for the typing derivation for 𝑣 𝑓 gives
us Σ; Γ ⊢ 𝜍𝑐 : F𝑐 . We can then invert WF-Frame here to get dom(𝜍) =

dom(F𝑐) |𝑥 ∀𝑥 ∈ dom(𝜍). Σ; •; Γ ♮ F𝑐 ⊢ 𝜍 (𝑥) : F𝑐 (𝑥) ⇒ Γ ♮ F𝑐 which
we can then use with Σ ⊢ 𝜎 : Γ𝑏 in WF-StackFrame to get Σ ⊢ 𝜎 ♮ 𝜍𝑐 :
Γ𝑏 ♮ F𝑐 .
Finally, we repeatedly apply Lemma E.25 to the derivations for the argu-
ments (𝑣1 . . . 𝑣𝑛) to get Σ ⊢ 𝜎 ′ : Γ𝑖 .

Σ; •; Γ𝑖 ⊢ 𝑒′ : 𝜏si
𝑓
⇒ Γ𝑏 Applying Lemma E.9 to the derivation for 𝑣 𝑓 gives us Σ; • ⊢ Γ ≲ Γ0.

Then, applying Lemma E.9 to the derivations for every 𝑣𝑖 gives us ∀𝑖 ∈
{ 1 . . . 𝑛 }. Σ; • ⊢ Γ𝑖−1 ≲ Γ𝑖 . By transitivity, we then have Σ; • ⊢ Γ ≲ Γ𝑛 .
Since the function being applied is a closure, we know syntactically that
it does not have where bounds, and thus Γ𝑏 = Γ𝑛 . Thus, we can rewrite
this to be Σ; • ⊢ Γ ≲ Γ𝑏 . Adding the same frame F𝑐 to both sides gives
us Σ; • ⊢ Γ ♮ F𝑐 ≲ Γ𝑏 ♮ F𝑐 . Further, adding identical argument entries to
both sides gives us Σ; • ⊢ Γ ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ≲ Γ𝑏 ♮ F𝑐 , 𝑥1 :
𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 .
Inversion on T-ClosureValue for the typing derivation of
𝑣 𝑓 gives us free-vars(𝑒) \ 𝑥 = 𝑥 𝑓 = dom(F𝑐) |𝑥 , 𝑟 =

free-provs(Γ(𝑥 𝑓)) , free-provs(𝑒) = dom(F𝑐) |𝑟 , and Σ; Δ; Γ ♮ F𝑐 , 𝑥1 :
𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F .
We can then apply Lemma E.18 with all of these facts to get
Σ; •; Γ𝑏 ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ⊢ 𝑒 : 𝜏si

𝑓
⇒ Γ𝑏 ♮ F . We can then

apply T-Framed to get Σ; •; Γ𝑏 ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ⊢ 𝑒 : 𝜏si
𝑓
⇒ Γ𝑏 .

•; Γ𝑏 ⊢ 𝜏si
𝑓
≲ 𝜏si

𝑓
⇒ Γ𝑏 Immediate by S-Refl.

∃Γ𝑜 .Γ𝑏 ⋓ Γ𝑜 = Γ𝑏 Γ𝑜 = Γ𝑏

For E-AppFunction, we pick Γ𝑖 to be Γ𝑏 ♮ 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 , and need to show:

1:86 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Σ ⊢ 𝜎′ : Γ𝑖 Applying Lemma E.9 to the derivation for 𝑣 𝑓 gives us
Σ; • ⊢ Γ ≲ Γ0. Then, applying Lemma E.9 to the deriva-
tions for every 𝑣𝑖 gives us ∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; • ⊢ Γ𝑖−1 ≲ Γ𝑖 .
Inversion on •; Γ𝑛 ⊢ 𝜚2 [𝜌/𝜚] :> 𝜚1 [𝜌/𝜚] ⇒ Γ𝑏 gives us a
sequence of outlives relations with intermediate contexts.
Applying Lemma E.16 to each of them and then combin-
ing the result by transitivity gives us Σ; • ⊢ Γ𝑛 ≲ Γ𝑏 .
Combining both by transitivity, we have Σ; • ⊢ Γ ≲ Γ𝑏 .
We can then apply Lemma E.23 with Σ ⊢ 𝜎 : Γ to get
Σ ⊢ 𝜎 : Γ𝑏 .
We can apply WF-StackFrame to get Σ ⊢ 𝜎 ♮ • : Γ𝑏 ♮ •.
Then, we repeatedly apply Lemma E.25 to the deriva-
tions for the arguments (𝑣1 . . . 𝑣𝑛) to get Σ ⊢ 𝜎 ♮ 𝑥1 ↦→
𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 : Γ ♮ 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 .

Σ; •; Γ𝑖 ⊢ 𝑒′ : 𝜏si
𝑓
[Φ/𝜑] [𝑟 /𝜚] [𝜏

si/𝛼] ⇒ Γ𝑏 Applying Lemma E.29 with ⊢ Σ; •; Γ𝑏 and Σ(𝑓) =

fn𝑓 <𝜑 , 𝜚 , 𝛼>(𝑥1 :𝜏si1 , . . . , 𝑥𝑛 :𝜏si𝑛) → 𝜏si𝑟 where𝜚1 : 𝜚2{𝑒 }
(from the premise of on E-AppFunction) gives us
Σ; 𝜑 : FRM , 𝜚 : PRV , 𝜚1 :> 𝜚2 , 𝛼 :★; Γ𝑏 ♮ 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 :
𝜏si𝑛 ⊢ framed 𝑒 : 𝜏si

𝑓
⇒ Γ𝑏 .

We then repeatedly apply Lemma E.10 for all of
our type, provenance, and environment variables to
get Σ; •; Γ𝑏 ♮ 𝑥1 : 𝜏si

𝑠1 , . . . , 𝑥𝑛 : 𝜏si𝑠𝑛 ⊢
framed 𝑒 : 𝜏si

𝑓
[Φ/𝜑] [𝑟/𝜚] [𝜏

si/𝛼] ⇒ Γ𝑏 where each

𝜏si
𝑠𝑖
= 𝜏si

𝑖
[Φ/𝜑] [𝜌/𝜚] [𝜏 si/𝛼].

•; Γ𝑏 ⊢ 𝜏′ ≲ 𝜏′ ⇒ Γ𝑏 Immediate by S-Refl.
∃Γ𝑜 .Γ𝑏 ⋓ Γ𝑜 = Γ𝑏 Γ𝑜 = Γ𝑏

Case T-Function:

From premise:

T-Function
Σ(𝑓) = fn 𝑓 <𝜑 , 𝜚 , 𝛼> (𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛) → 𝜏si𝑟 where 𝜚1 : 𝜚2 { 𝑒 }

Σ; Δ; Γ ⊢ 𝑓 : ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛) → 𝜏si𝑟 where 𝜚1 : 𝜚2 ⇒ Γ

Since 𝑒 = ∀<𝜌 , 𝛼>(𝜏si1 , . . . , 𝜏si𝑛) → 𝜏si𝑟 , by inspection of the reduction rules, we know that 𝑒 steps
with the following rule:

E-Function
Σ(𝑓) = fn 𝑓 <𝜑 , 𝜚 , 𝛼> (𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛) → 𝜏s𝑟 where 𝜚 : 𝜚 ′ { 𝑒 }

Σ ⊢ (𝜎 ; 𝑓) → (𝜎 ; ⟨• , forall<𝜑 , 𝜚 , 𝛼> |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩)

We then pick Γ𝑖 to be Γ , and need to show:

Σ ⊢ 𝜎 : Γ Immediate from our premise.
Σ; •; Γ ⊢ 𝑒′ : 𝜏′ ⇒ Γ By T-ClosureValue since 𝜎𝑐 is empty, and we know that the body itself is

well-typed as a consequence of inversion on WF-FunctionDefinition for f.
•; Γ ⊢ 𝜏′ ≲ 𝜏 ⇒ Γ Immediate by S-Refl.
∃Γ𝑜 .Γ ⋓ Γ𝑜 = Γ Γ𝑜 = Γ

Oxide: The Essence of Rust 1:87

Case T-Closure:

From premise:

T-Closure
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 free-nc-varsΓ (𝑒) = 𝑥𝑛𝑐 𝑟 = free-provs(Γ (𝑥𝑓)) , free-provs(𝑒)

F𝑐 = 𝑟 ↦→ Γ (𝑟) , 𝑥𝑓 : Γ (𝑥𝑓) Σ; Δ; Γ [𝑥𝑛𝑐 ↦→ Γ (𝑥𝑛𝑐)†] ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ ⊢ |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } : (𝜏si1 , . . . , 𝜏si𝑛) F𝑐→ 𝜏si𝑟 ⇒ Γ′

Since 𝑒 = forall<𝜑 , 𝜌 , 𝛼> |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } , by inspection of the reduction rules,
we know that 𝑒 steps with the following rule:

E-Closure
free-vars(𝑒) = 𝑥𝑓 free-nc-vars𝜎 (𝑒) = 𝑥𝑛𝑐 𝜍𝑐 = 𝜎 | 𝑥𝑓

Σ ⊢ (𝜎 ; |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 }) → (𝜎 [𝑥𝑛𝑐 ↦→ dead]; ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩)

We then pick Γ𝑖 to be Γ [𝑥𝑛𝑐 ↦→ Γ(𝑥𝑛𝑐)†] , and need to show:

Σ ⊢ 𝜎 [𝑥𝑛𝑐 ↦→ dead] : Γ [𝑥𝑛𝑐 ↦→ Γ (𝑥𝑛𝑐)†] Compared to Γ, we know that Γ [𝑥𝑛𝑐 ↦→ Γ(𝑥𝑛𝑐)†] has more
things marked dead and no other changes. Thus, we can
apply R-Env to get Σ; • ⊢ Γ ≲ Γ [𝑥𝑛𝑐 ↦→ Γ(𝑥𝑛𝑐)†]. Then, we
can apply Lemma E.23 to get Σ ⊢ 𝜎 : Γ [𝑥𝑛𝑐 ↦→ Γ(𝑥𝑛𝑐)†].
Since dead is good at every dead type 𝜏sd by T-Dead, we
can then build a new derivation using that rule instead for
every 𝑥𝑛𝑐 that is now at a dead type. This gives us Σ ⊢
𝜎 [𝑥𝑛𝑐 ↦→ dead] : Γ [𝑥𝑛𝑐 ↦→ Γ(𝑥𝑛𝑐)†].

Σ; •; Γ𝑖 ⊢ 𝑒′ : 𝜏′ ⇒ Γ𝑖 Immediate by inversion of T-Closure and application of
T-ClosureValue. Note that they have identical premises.

•; Γ𝑖 ⊢ 𝜏′ ≲ 𝜏′ ⇒ Γ𝑖 Immediate by S-Refl.
∃Γ𝑜 .Γ𝑖 ⋓ Γ𝑜 = Γ𝑖 Γ𝑜 = Γ𝑖

Case T-Shift:

From premise:

T-Shift
Σ; Δ; Γ ⊢ 𝑒 : 𝜏si ⇒ Γ′ , 𝑥 : 𝜏sd

Σ; Δ; Γ ⊢ shift 𝑒 : 𝜏si ⇒ Γ′

Since 𝑒 = shift 𝑒𝑖 , by inspection of the reduction rules, we know that 𝑒 steps with the following
rule:

E-Shift

Σ ⊢ (𝜎 , 𝑥 ↦→ 𝑣′; shift 𝑣) → (𝜎 ; 𝑣)

We then pick Γ𝑖 to be Γ′ , and need to show:

1:88 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed

Σ ⊢ 𝜎 : Γ′ By inversion of WF-StackFrame on Σ ⊢ 𝜎 , 𝑥 ↦→ 𝑣 ′ : Γ′ , 𝑥 : 𝜏sd, we get Σ ⊢
𝜎 : Γ𝑖 , dom(𝜍 , 𝑥 ↦→ 𝑣 ′) = dom(F , 𝑥 : 𝜏sd) |𝑥 , and ∀𝑥 ∈ dom(𝜎 ♮ 𝜍 , 𝑥 ↦→
𝑣 ′). Σ; •; Γ𝑖 ♮ F , 𝑥 : 𝜏sd ⊢ (𝜎 ♮ 𝜍 , 𝑥 ↦→ 𝑣 ′) (𝑥) : (Γ𝑖 ♮ F , 𝑥 : 𝜏sd) (𝑥) ⇒
Γ𝑖 ♮ F , 𝑥 : 𝜏sd. Note that Γ𝑖 ♮ F = Γ′. We can then immediately see
that the above implies dom(𝜍) = dom(F)|𝑥 and ∀𝑥 ∈ dom(𝜎 ♮ 𝜍 , 𝑥 ↦→
𝑣 ′). Σ; •; Γ𝑖 ♮ F ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ𝑖 ♮ F)(𝑥) ⇒ Γ𝑖 ♮ F . Thus, we can apply
WF-StackFrame to get Σ ⊢ 𝜎 : Γ𝑖 ♮ 𝜍 which can be rewritten as Σ ⊢ 𝜎 : Γ′.

Σ; •; Γ′ ⊢ 𝑣 : 𝜏si ⇒ Γ′ We know from E-Shift that 𝑒 is a value 𝑣 . Thus, we can apply Lemma E.21
to Σ; •; Γ ⊢ 𝑣 : 𝜏si ⇒ Γ′ , 𝑥 : 𝜏sd to get Σ; •; Γ′ , 𝑥 : 𝜏sd ⊢ 𝑣 : 𝜏si ⇒
Γ′ , 𝑥 : 𝜏sd.
We now wish to show that Σ; •; Γ′ ⊢ 𝑣 : 𝜏si ⇒ Γ′. By inspecting
the grammar of values and their typing rules, we know that the only
values who depend on the context are pointers and closure values. But by
inversion on Σ; •; Γ ⊢ shift 𝑣 : 𝜏si ⇒ Γ′, we know that Σ; •; Γ′ ⊢ 𝜏si.
Since the type is valid without the frame, we know that the values cannot
depend on that frame. Thus, we can conclude Σ; •; Γ′ ⊢ 𝑣 : 𝜏si ⇒ Γ′.

•; Γ′ ⊢ 𝜏si ≲ 𝜏si ⇒ Γ′ Immediate by S-Refl.
∃Γ𝑜 .Γ′ ⋓ Γ𝑜 = Γ′ Γ𝑜 = Γ′

Case T-Framed:

From premise:

T-Framed
Σ; Δ; Γ ⊢ 𝑒 : 𝜏si ⇒ Γ′ ♮ F′

Σ; Δ; Γ ⊢ framed 𝑒 : 𝜏si ⇒ Γ′

Since 𝑒 = framed 𝑒𝑖 , by inspection of the reduction rules, we know that 𝑒 steps with the following
rule:

E-Framed

Σ ⊢ (𝜎 ♮ 𝜍 ; framed 𝑣) → (𝜎 ; 𝑣)

We then pick Γ𝑖 to be Γ′ , and need to show:

Σ ⊢ 𝜎 : Γ′ Applying Lemma E.24 to Σ ⊢ 𝜎 ♮ 𝜍 : Γ′ ♮ F gives us Σ ⊢ 𝜎 : Γ′.
Σ; •; Γ′ ⊢ 𝑣 : 𝜏si ⇒ Γ′ We know from E-Framed that 𝑒 is a value 𝑣 . Thus, we can apply Lemma E.21

to Σ; •; Γ ♮ F ⊢ 𝑣 : 𝜏si ⇒ Γ′ ♮ F ′ to get Σ; •; Γ′ ♮ F ′ ⊢ 𝑣 : 𝜏si ⇒
Γ′ ♮ F ′.
We now wish to show that Σ; •; Γ′ ⊢ 𝑣 : 𝜏si ⇒ Γ′. By inspecting
the grammar of values and their typing rules, we know that the only
values who depend on the context are pointers and closure values. But by
inversion on Σ; •; Γ ⊢ framed 𝑣 : 𝜏si ⇒ Γ′, we know that Σ; •; Γ′ ⊢ 𝜏si.
Since the type is valid without the frame, we know that the values cannot
depend on that frame. Thus, we can conclude Σ; •; Γ′ ⊢ 𝑣 : 𝜏si ⇒ Γ′.

•; Γ′ ⊢ 𝜏si ≲ 𝜏si ⇒ Γ′ Immediate by S-Refl.
∃Γ𝑜 .Γ′ ⋓ Γ𝑜 = Γ′ Γ𝑜 = Γ′

Case T-Drop:

Oxide: The Essence of Rust 1:89

From premise:

T-Drop
Γ (𝜋) = 𝜏si𝜋 Σ; Δ; Γ [𝜋 ↦→ 𝜏si

†
𝜋] ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Σ; Δ; Γ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Since T-Drop applies to any expression 𝑒 , we cannot determine anything about what rule we
stepped with. So, we will instead try to apply our induction hypothesis to the typing derivation in
the premise of T-Drop (Σ; •; Γ [𝜋 ↦→ 𝜏si

†
𝜋] ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓) . To do this, we need to establish the

premises of our inductive hypothesis.
Namely, we need to show:
(1) Σ; •; Γ [𝜋 ↦→ 𝜏si

†
𝜋] ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓 ,

(2) Σ ⊢ 𝜎 : Γ [𝜋 ↦→ 𝜏si
†

𝜋],
(3) Σ ⊢ (𝜎 ; 𝑒) → (𝜎 ′; 𝑒 ′).

(1) follows immediately from our premise.
(2) follows almost directly from our premise, which tells us that Σ ⊢ 𝜎 : Γ. We just need to show

that the value at 𝑥 (where 𝑥 is the root of 𝜋) is still valid at its new type. Fortunately, it’s old
derivation works almost perfectly except for typing the part that corresponds directly to 𝜋 .
In this case, we can use T-Dead on the value to get the new derivation with that part of the
aggregate structure at the uninitialized type 𝜏si†𝜋 .

(3) follows immediately from our premise.

This allows us to use our induction hypothesis to conclude that there exists Γ′𝑖 such that:
(5) Σ ⊢ 𝜎 ′ : Γ′𝑖 ,
(6) Σ; •; Γ′𝑖 ⊢ 𝑒 ′ : 𝜏 ′ ⇒ Γ′

𝑓
,

(7) •; Γ′
𝑓
⊢ 𝜏 ′ ≲ 𝜏sx ⇒ Γ𝑠 , and

(8) ∃Γ𝑜 . Γ𝑠 ⋓ Γ𝑜 = Γ𝑓 .
□

E.4 Type Safety
Theorem E.32 (Type Safety). If Σ; •; • ⊢ 𝑒 : 𝜏 si ⇒ Γ and ⊢ Σ, then Σ ⊢ (•; 𝑒) →∗ (𝜎 ′; 𝑣)

or evaluation of 𝑒 aborts or diverges.

Proof. By the interleaved use of Progress and Preservation. □

	Abstract
	1 Introduction
	2 Data They Can Call Their Own
	2.1 Ownership
	2.2 Borrowing
	2.3 Formalizing Rust
	2.4 Oxide, More Formally
	2.5 Non-Lexical Lifetimes in Oxide

	3 Oxide
	3.1 Syntax
	3.2 Type System
	3.3 Operational Semantics
	3.4 Well-typed Oxide programs won't go wrong!

	4 (Iron) Oxide is Rust
	4.1 Liveness
	4.2 Conditional Control Flow
	4.3 Tested Semantics
	4.4 Polonius

	5 Related Work
	5.1 Semantics for Rust
	5.2 Practical Substructural Programming

	6 Discussion and Future Work
	6.1 A Tower of Languages
	6.2 Two-Phase Borrows
	6.3 A Rusty Future

	7 Conclusion
	References
	A Oxide Syntax
	B Statics
	B.1 Well-Formedness Judgments
	B.2 Subtyping & Provenance Subtyping
	B.3 Ownership Safety
	B.4 Typing
	B.5 Additional Judgments

	C Metafunctions
	D Dynamics
	E Metatheory
	E.1 Supporting Lemmas
	E.2 Progress
	E.3 Preservation
	E.4 Type Safety

